Skip to main content
Log in

Investigation about electrocatalytic oxidation of glucose on loaded Ag nanoparticles on functionalized carbon nanotubes

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Silver nanoparticle-modified glassy carbon electrode was prepared by electrodeposition forming silver nanoparticles on functionalized multiwall carbon nanotubes (MWCNT) matrix. The electrooxidation of glucose in 0.1 M NaOH was studied by using cyclic voltammetry. The transmission electron microscopy (TEM) and scanning electron microscopy (SEM) images showed that the used functionalized MWCNT-base is favorable for the construction of a stable layer on the surface of modified electrode. The electrode has surface-confined nanoparticles showing effective catalytic behavior in the studies of glucose oxidation. Investigations showed at the first glucose was catalytically oxidized by AgO, and then, the reaction glucose oxidation intermediates with Ag2O were followed stepwisely. Based on the obtained cyclic voltammetric results, differential pulsed voltammetry was used for detection of glucose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Li J, Zhou L, Han X, Hu J, Liu H, Xu J (2009) Direct electrochemistry of hemoglobin immobilized on siliceous mesostructured cellular foam. Sensors Actuators B Chem 138(2):545–549

    Article  CAS  Google Scholar 

  2. Lu LM, Li HB, Qu F, Zhang XB, Shen GL, Yu RQ (2011) In situ synthesis of palladium nanoparticle–graphene nanohybrids and their application in nonenzymatic glucose biosensors. Biosens Bioelectron 26(8):3500–3504

    Article  CAS  Google Scholar 

  3. Gupta VK, Sethi B, Sharma RA, Agarwal S, Bharti A (2013) Mercury selective potentiometric sensor based on low rim functionalized thiacalix [4]-arene as a cationic receptor. J Mol Liq 177:114–118

    Article  CAS  Google Scholar 

  4. Gupta VK, Ganjali MR, Norouzi P, Khani H, Nayak A, Agarwal S (2011) Electrochemical analysis of some toxic metals by ion–selective electrodes. Crit Rev Anal Chem 41(4):282–313

    Article  CAS  Google Scholar 

  5. Gupta VK, Nayak A, Agarwal S, Singhal B (2011) Recent advances on potentiometric membrane sensors for pharmaceutical analysis. Comb Chem High Throughput Screen 14(4):284–302

    Article  CAS  Google Scholar 

  6. Gupta VK, Singh AK, Al Khayat M, Gupta B (2007) Neutral carriers based polymeric membrane electrodes for selective determination of mercury (II). Anal Chim Acta 590(1):81–90

    Article  CAS  Google Scholar 

  7. Gupta VK, Jain AK, Maheshwari G (2007) Aluminum (III) selective potentiometric sensor based on morin in poly (vinyl chloride) matrix. Talanta 72(4):1469–1473

    Article  CAS  Google Scholar 

  8. Gupta VK, Jain AK, Agarwal S, Maheshwari G (2007) An iron (III) ion-selective sensor based on a μ-bis (tridentate) ligand. Talanta 71(5):1964–1968

    Article  CAS  Google Scholar 

  9. Gupta VK, Jain AK, Maheshwari G, Lang H, Ishtaiwi Z (2006) Copper (II)-selective potentiometric sensors based on porphyrins in PVC matrix. Sensors Actuators B Chem 117(1):99–106

    Article  CAS  Google Scholar 

  10. Gupta VK, Singh AK, Mehtab S, Gupta B (2006) A cobalt (II)-selective PVC membrane based on a Schiff base complex of N, N′-bis (salicylidene)-3, 4-diaminotoluene. Anal Chim Acta 566(1):5–10

    Article  CAS  Google Scholar 

  11. Zou YJ, Xiang CL, Sun LX, Xu F (2008) Glucose biosensor based on electrodeposition of platinum nanoparticles onto carbon nanotubes and immobilizing enzyme with chitosan-SiO2 sol-gel. Biosens Bioelectron 23(7):1010–1016

    Article  CAS  Google Scholar 

  12. Shi J, Zhang H, Snyder A, Wang MX, Xie J, Porterfield DM, Stanciu LA (2012) An aqueous media based approach for the preparation of a biosensor platform composed of graphene oxide and Pt-black. Biosens Bioelectron 38(1):314–320

    Article  CAS  Google Scholar 

  13. Goyal RN, Gupta VK, Chatterjee S (2010) Voltammetric biosensors for the determination of paracetamol at carbon nanotube modified pyrolytic graphite electrode. Sensors Actuators B Chem 149(1):252–258

    Article  CAS  Google Scholar 

  14. Khani H, Rofouei MK, Arab P, Gupta VK, Vafaei Z (2010) Multi-walled carbon nanotubes-ionic liquid-carbon paste electrode as a super selectivity sensor: application to potentiometric monitoring of mercury ion (II). J Hazard Mater 183(1):402–409

    Article  CAS  Google Scholar 

  15. Goyal RN, Gupta VK, Bachheti N, Sharma RA (2008) Electrochemical sensor for the determination of dopamine in presence of high concentration of ascorbic acid using a fullerene-C60 coated gold electrode. Electroanalysis 20(7):757–764

    Article  CAS  Google Scholar 

  16. Goyal RN, Gupta VK, Chatterjee S (2008) Simultaneous determination of adenosine and inosine using single-wall carbon nanotubes modified pyrolytic graphite electrode. Talanta 76(3):662–668

    Article  CAS  Google Scholar 

  17. Goyal RN, Gupta VK, Bachheti N (2007) Fullerene-C 60-modified electrode as a sensitive voltammetric sensor for detection of nandrolone-an anabolic steroid used in doping. Anal Chim Acta 597(1):82–89

    Article  CAS  Google Scholar 

  18. Sanghavi BJ, Wolfbeis OS, Hirsch T, Swami NS (2015) Nanomaterial-based electrochemical sensing of neurological drugs and neurotransmitters. Mikrochim Acta 182(1–2):1–41

    Article  CAS  Google Scholar 

  19. Sanghavi BJ, Hirsch G, Karna SP, Srivastava AK (2012) Potentiometric stripping analysis of methyl and ethyl parathion employing carbon nanoparticles and halloysite nanoclay modified carbon paste electrode. Anal Chim Acta 735:37–45

    Article  CAS  Google Scholar 

  20. Sanghavi BJ, Varhue W, Rohani A, Liao KT, Bazydlo LA, Chou CF, Swami NS (2015) Ultrafast immunoassays by coupling dielectrophoretic biomarker enrichment in nanoslit channel with electrochemical detection on graphene. Lab Chip 15(24):4563–4570

    Article  CAS  Google Scholar 

  21. Sanghavi BJ, Moore JA, Chávez JL, Hagen JA, Kelley-Loughnane N, Chou CF, Swami NS (2016) Aptamer-functionalized nanoparticles for surface immobilization-free electrochemical detection of cortisol in a microfluidic device. Biosens Bioelectron 78:244–252

    Article  CAS  Google Scholar 

  22. Sanghavi BJ, Srivastava AK (2013) Adsorptive stripping voltammetric determination of imipramine, trimipramine and desipramine employing titanium dioxide nanoparticles and an Amberlite XAD-2 modified glassy carbon paste electrode. Analyst 138(5):1395–1404

    Article  CAS  Google Scholar 

  23. Wang Z, Zhou X, Zhang J, Boey F, Zhang H (2009) Direct electrochemical reduction of single-layer graphene oxide and subsequent functionalization with glucose oxidase. J Phys Chem C 113(32):14071–14075

    Article  CAS  Google Scholar 

  24. Gupta VK, Jain R, Radhapyari K, Jadon N, Agarwal S (2011) Voltammetric techniques for the assay of pharmaceuticals—a review. Anal Biochem 408(2):179–196

    Article  CAS  Google Scholar 

  25. Zhuang ZJ, Su XD, Yuan HY, Sun Q, Xiao D, Choi M (2008) An improved sensitivity non-enzymatic glucose sensor based on a CuO nanowire modified Cu electrode. Analyst 133(1):126–132

    Article  CAS  Google Scholar 

  26. Bai Y, Yang WW, Sun Y, Sun CQ (2008) Enzyme-free glucose sensor based on a three-dimensional gold film electrode. Sensors Actuators B Chem 134(2):471–476

    Article  CAS  Google Scholar 

  27. Wang J, Thomas DF, Chen A (2008) Nonenzymatic electrochemical glucose sensor based on nanoporous PtPb networks. Anal Chem 80(4):997–1004

    Article  CAS  Google Scholar 

  28. Sanghavi BJ, Wolfbeis OS, Hirsch T, Swami NS (2015) Nanomaterial-based electrochemical sensing of neurological drugs and neurotransmitters. Microchim Acta 182(1–2):1–41

    Article  CAS  Google Scholar 

  29. Su C, Zhang C, Lu G, Ma C (2010) Nonenzymatic electrochemical glucose sensor based on Pt nanoparticles/mesoporous carbon matrix. Electroanalysis 22(16):1901–1905

    Article  CAS  Google Scholar 

  30. Cherevko S, Chung CH (2009) Gold nanowire array electrode for non-enzymatic voltammetric and amperometric glucose detection. Sensors Actuators B Chem 142(1):216–223

    Article  CAS  Google Scholar 

  31. Baghayeri M, Amiri A, Farhadi S (2016) Development of non-enzymatic glucose sensor based on efficient loading Ag nanoparticles on functionalized carbon nanotubes. Sensors Actuators B Chem 225:354–362

    Article  CAS  Google Scholar 

  32. Baghayeri M, Veisi H (2015) Fabrication of a facile electrochemical biosensor for hydrogen peroxide using efficient catalysis of hemoglobin on the porous Pd@Fe3O4-MWCNT nanocomposite. Biosens Bioelectron 74:190–198

    Article  CAS  Google Scholar 

  33. Hadavifar M, Bahramifar N, Younesi H, Li Q (2014) Adsorption of mercury ions from synthetic and real wastewater aqueous solution by functionalized multi-walled carbon nanotube with both amino and thiolated groups. Chem Eng J 237(1):217–228

    Article  CAS  Google Scholar 

  34. Ojani R, Safshekan S, Raoof JB (2014) Silver nanoparticle decorated poly (2-aminodiphenylamine) modified carbon paste electrode as a simple and efficient electrocatalyst for oxidation of formaldehyde. Chin J Catal 35(9):1565–1570

    Article  CAS  Google Scholar 

  35. Jia M, Wang T, Liang F, Hu J (2012) A novel process for the fabrication of a silver-nanoparticle-modified electrode and its application in nonenzymatic glucose sensing. Electroanalysis 24(9):1864–1868

    Article  CAS  Google Scholar 

  36. Luo S, Chen Y, Xie A, Kong Y, Wang B, Yao C (2014) Nitrogen doped graphene supported Ag nanoparticles as electrocatalysts for oxidation of glucose. ECS Electrochem Lett 3(11):20–22

    Article  Google Scholar 

  37. Quan H, Park SU, Park J (2010) Electrochemical oxidation of glucose on silver nanoparticle-modified composite electrodes. Electrochim Acta 55(7):2232–2237

    Article  CAS  Google Scholar 

  38. Lee CL, Yang HL, Chen CW, Tsai YL (2013) Silver nanoplates: tetradecyltrimethylammonium ions as additives in seed-growth synthesis and their potential application as catalysts for glucose oxidation reaction. Electrochim Acta 106:411–417

    Article  CAS  Google Scholar 

  39. Casella IG, Ritorti M (2010) Electrodeposition of silver particles from alkaline aqueous solutions and their electrocatalytic activity for the reduction of nitrate, bromate and chlorite ions. Electrochim Acta 55(22):6462–6468

    Article  CAS  Google Scholar 

  40. Sharma DK, Ott A, O’Mullane AP, Bhargava SK (2011) The facile formation of silver dendritic structures in the absence of surfactants and their electrochemical and SERS properties. Colloids Surf A Physicochem Eng Asp 386(1):98–106

    Article  CAS  Google Scholar 

  41. DeMott JM, Jahngen EG (2005) Determination of amino acids at a silver oxide/silver phosphate electrode and the analysis of structure-response relationships. Electroanalysis 17(7):599–606

    Article  CAS  Google Scholar 

  42. Chen J, Zhao CX, Zhi MM, Wang K, Deng L, Xu G (2012) Alkaline direct oxidation glucose fuel cell system using silver/nickel foams as electrodes. Electrochim Acta 66:133–138

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Baghayeri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baghayeri, M., Amiri, A. & Motamedifar, A. Investigation about electrocatalytic oxidation of glucose on loaded Ag nanoparticles on functionalized carbon nanotubes. Ionics 22, 1709–1717 (2016). https://doi.org/10.1007/s11581-016-1689-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-016-1689-y

Keywords

Navigation