Skip to main content
Log in

Gel-assisted synthesis of Ag nanoparticles: a novel hydrogen peroxide sensor based on Ag nanoparticles-carbon nanotube composite film

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Ag nanoparticles (AgNPs) catalyst has been synthesized by a simple and low-cost method using gelatin as organic precursor. Techniques of X-ray diffraction (XRD), transmission electron microscope (TEM) and energy dispersive X-ray (EDAX) were used to characterize the structure and properties of the Ag nanoparticles. Gelatin plays an important role in formation of the Ag nanoparticles. Moreover, glassy carbon electrode modified with Ag nanoparticles and multi wall carbon nanotube (AgNPs-MWNT/GCE) was prepared by casting of the AgNPs-MWNT solution on GCE. The sensor responded linearly to hydrogen peroxide (H2O2) in the concentration of 6 to 900 μM with detection limit of 4.2 μM at 3σ using amperometry. Also, AgNPs-MWNT/GCE was used for H2O2 detection in real sample. The studied sensor exhibited good reproducibility and long-term stability. The produced nanosilver is stable and shows potential applications in the field of sensors, catalysis, fuel cells and nanodevices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Roucoux, A., Schulz, J., and Patin, H., Chem. Rev., 2002, vol. 102, p. 3757.

    Article  CAS  Google Scholar 

  2. Hernandez-Santos, D., Gonzalez-Garcia, M.B., and Garcia, A.C., Electroanalysis, 2002, vol. 14, p. 1225.

    Article  CAS  Google Scholar 

  3. Widegren, J.A. and Finke, R.G., J. Mol. Catal. A Chem., 2003, vol. 191, p. 187.

    Article  CAS  Google Scholar 

  4. Campbell, F.W., Belding, S.R., Baron, R., Xiao, L., and Compton, R.G., J. Phys. Chem. C, 2009, vol. 113, p. 9053.

    Article  CAS  Google Scholar 

  5. Hughes, M.D., Xu, Y., Jenkins, P., McMorn, P., Landon, P., Enache, D.I., Carley, A.F., Attard, G., Hutchings, G.J., King, F., Stitt, E.H., Johnston, P., Griffin, K., and Kiely, C.J., Nature, 2005, vol. 437, p. 1132.

    Article  CAS  Google Scholar 

  6. Salata, O.V., J. Nanobiotechnol., 2004, vol. 2, p. 1.

    Article  Google Scholar 

  7. Lewis, L.N., Chem. Rev., 1993, vol. 93, p. 268.

    Article  Google Scholar 

  8. Niemeyer, C.M., Angew Chem. Int. Ed., 2001, vol. 40, p. 4128.

    Article  CAS  Google Scholar 

  9. Solov’ev, A.Yu., Potekhina, T.S., and Chernova, I.A., Russ. J. Appl. Chem., 2007, vol. 80, p. 438.

    Article  Google Scholar 

  10. Lee, H.J. and Jeong, S.H., Text Res. J., 2005, vol. 75, p. 551.

    Article  CAS  Google Scholar 

  11. Murphy, CJ., Sau, T.K., and Gole, A.M., J. Phys. Chem. B, 2005, vol. 109, p. 13857.

    Article  CAS  Google Scholar 

  12. Lee, I., Han, S.W., and Kim, K., J. Raman Spectrosc., 2001, vol. 32, p. 947.

    Article  CAS  Google Scholar 

  13. Long, D., Wu, G., and Chen, S., Radial Phys. Chem., 2007, vol. 76, p. 1126.

    Article  CAS  Google Scholar 

  14. Bogle, K.A., Dhole, S.D., and Bhoraskar, V.N., Nanotechnol., 2006, vol. 17, p. 3204.

    Article  CAS  Google Scholar 

  15. Bönnemann, H. and Richards, R., Eur. J. Inorg. Chem., 2001, vol. 10, p. 2455.

    Article  Google Scholar 

  16. Mallick, K., Witcomb, M.J., and Scurell, M.S., J. Mater. Sci., 2004, vol. 39, p. 4459.

    Article  CAS  Google Scholar 

  17. Soto, K.F., Carrasco, A., Dowell, T.Y., Yarza K.M., and Murr, L.E., J. Nanopart. Res., 2005, vol. 7, p. 145.

    Article  CAS  Google Scholar 

  18. Navaladian, S., Viswanathan, B., Viswanath, R.P., and Saradarajan, P.K., Nanoscale Res. Lett., 2007, vol. 2, p. 44.

    Article  CAS  Google Scholar 

  19. Shankaran, D.R., Iimura, K.I., and Kato, T., Sens. Actuators B, 2003, vol. 96, p. 523.

    Article  CAS  Google Scholar 

  20. De Mattos, I.L., Gorton, L., and Ruzgas, T., Biosens. Bioelectron., 2003, vol. 18, p. 193.

    Article  Google Scholar 

  21. Matsubara, C., Ishii, K., and Takamura, K., J. Pharm. Soc., 1992, vol. 112, p. 50.

    CAS  Google Scholar 

  22. Xiao, P., Garcia, B.B., Guo, Q., Liu, D.W., and Cao, G.Z., Electrochem. Commun., 2007, vol. 9, p. 2441.

    Article  CAS  Google Scholar 

  23. Lei, C.X., Hu, S.Q., Shen, G.L., and Yu, R.Q., Talanta, 2003, vol. 59, p. 981.

    Article  CAS  Google Scholar 

  24. Kicela, A. and Daniele, S., Talanta, 2006, vol. 68, p. 1632.

    Article  CAS  Google Scholar 

  25. Tang, Y.H., Cao, Y., Wang, S.P., Shen, G.L., and Yu, R.Q., Sens. Actuators B, 2006, vol. 137, p. 736.

    Article  Google Scholar 

  26. Yao, S.J., Xu, J.H., Wang, Y., Chen, X.X., Xu, Y.X., and Hu, S.S., Anal. Chim. Acta, 2006, vol. 557, p. 78.

    Article  CAS  Google Scholar 

  27. Deng, Z., Gong, Y., Luo, Y., and Tian, Y., Biosens. Bioelectron., 2009, vol. 24, p. 2465.

    Article  CAS  Google Scholar 

  28. Batchelor-McAuleya, C., Du, Y., Wildgoosea, G.G., and Compton, R.G., Sens. Actuators B, 2008, vol. 135, p. 230.

    Article  Google Scholar 

  29. Yin, J., Qi, X., Yang, L., Hao, G., Li, J., and Zhong, J., Electrochim. Acta, 2011, vol. 56, p. 3884.

    Article  CAS  Google Scholar 

  30. Guascito, M.R., Filippo, E., Malitesta, C., Manno, D., Serra, A., and Turco, A., Biosens. Bioelectron., 2008, vol. 24, p. 1057.

    Article  CAS  Google Scholar 

  31. Zhao, W., Wang, H., Qin, X., Wang, X., Zhao, Z., Miao, Z., Chen, L., Shana, M., Fang, Y., and Chen, Q., Talanta, 2009, vol. 80, p. 1029.

    Article  CAS  Google Scholar 

  32. Raoof, J.B., Ojani, R., Hasheminejad, E., and Rashid-Nadimi, S., Applied Surf. Sci., 2012, vol. 258, p. 2788.

    Article  CAS  Google Scholar 

  33. Liu, S., Tian, J., Wang, L., and Sun, X., Carbon, 2011, vol. 49, p. 3158.

    Article  CAS  Google Scholar 

  34. Wang, L., Zhu, H., Song, Y., Liu, L., He, Z., Wan, L., Xiang, Y., Chen, S., and Chen, J., Electrochim. Acta, 2012, vol. 60, p. 314.

    Article  CAS  Google Scholar 

  35. Cui, K., Song, Y., Yao, Y., Huang, Z., and Wang, L., Electrochem. Commun., 2008, vol. 10, p. 663.

    Article  CAS  Google Scholar 

  36. Vasileva, P., Donkova, B., Karadjova, I., and Dushkin, C., Coll. Surf A: Physicochem. Eng. Aspects, 2011, vol. 382, p. 203.

    Article  CAS  Google Scholar 

  37. Liu, S., Wang, L., Tian, J., Luo, Y., Zhang, X., and Sun, X., J. Coll. Interf. Sci., 2011, vol. 363, p. 615.

    Article  CAS  Google Scholar 

  38. Lin, C.Y., Lai, Y.H., Balamurugan, A., Vittal, R., Lin, C.W., and Ho, K.C., Talanta, 2010, vol. 82, p. 340.

    Article  CAS  Google Scholar 

  39. Lu, W., Luo, Y., Chang, G., Liao, F., and Sun, X., Thin Solid Films, 2011, vol. 520, p. 554.

    Article  CAS  Google Scholar 

  40. Endo, T., Yanagida, Y., and Hatsuzawa, T., Measurment, 2008, vol. 41, p. 1045.

    Google Scholar 

  41. Chen, H., Zhang, Z., Cai, D., Zhang, S., Zhang, B., Tang, J., and Wu, Z., Talanta, 2011, vol. 86, p. 266.

    Article  CAS  Google Scholar 

  42. Laviron, E., J. Electroanal. Chem., 1979, vol. 100, p. 263.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fereshteh Chekin.

Additional information

Published in Russian in Elektrokhimiya, 2014, Vol. 50, No. 12, pp. 1299–1305.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chekin, F., Bagheri, S. & Hamid, S.B.A. Gel-assisted synthesis of Ag nanoparticles: a novel hydrogen peroxide sensor based on Ag nanoparticles-carbon nanotube composite film. Russ J Electrochem 50, 1164–1169 (2014). https://doi.org/10.1134/S102319351405005X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102319351405005X

Keywords

Navigation