Skip to main content
Log in

Preparation and application of a simple electrochemical sensor for the determination of copper in some real and standard samples

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In this study, anodic stripping voltammetry was optimized and used for the trace determination of copper ions using modified carbon paste electrode with dicyclohexyl-18-crown-6 and multi-walled carbon nanotubes. The important and critical parameters such as pH, electrolyte type, electrode composition, deposition time, and reduction potential was studied and optimized. Copper shows a sharp peak at +0.095 V that was used for its determination from 4.0 to 200 ng mL−1. With the application of the suggested method, the detection limit and relative standard deviation were obtained as 1.1 ng mL−1 and ±2.3 %, respectively. This electrochemical sensor has several advantages such as simple and low cost preparation, good reproducibility, low LOD, and high speed. The suggested sensor was applied successfully for the determination of copper ions in environmental, biological, and standard samples.

The complex formation of copper ion with dicyclohexyl-18-crown-6 at the surface of modified carbon paste electrode

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tao Y, Gu X, Pan Y, Deng L, Wei Y, Kong Y, Li W (2015) Overoxidation of conducting polymers combined with in situ plated bismuth film: an approach for simultaneous detection of cadmium and lead ions. J Electrochem Soc 162:H194–H199

    Article  CAS  Google Scholar 

  2. Taher MA, Daliri Z, Fazelirad H (2014) Simultaneous extraction and preconcentration of copper, silver and palladium with modified alumina and their determination by electrothermal atomic absorption spectrometry. Chin Chem Lett 25:649–654

    Article  CAS  Google Scholar 

  3. Vedhi C, Selvanathan G, Arumugam P, Manisankar P (2009) Electrochemical sensors of heavy metals using novel polymer-modified glassy carbon electrodes. Ionics 15:377–383

    Article  CAS  Google Scholar 

  4. Zhang T, Li C, Mao B, An Y (2014) Determination of Cd2+ by ultrasound-assisted square wave anodic stripping voltammetry with a boron-doped diamond electrode. Ionics 21:1761–1769

    Article  Google Scholar 

  5. Germiniano TO, Corazza MZ, Segatelli MG, Tarley CRT (2014) Double-imprinted cross-linked poly(Acrylamide-co-Ethylene Glycol Dimethacrylate) as a novel sorbent for the on-line preconcentration and determination of copper(II) by flame atomic absorption spectrometry. Anal Lett 48:61–74

    Article  Google Scholar 

  6. Chaiyo S, Siangproh W, Apilux A, Chailapakul O (2015) Highly selective and sensitive paper-based colorimetric sensor using thiosulfate catalytic etching of silver nanoplates for trace determination of copper ions. Anal Chim Acta 866:75–83

    Article  CAS  Google Scholar 

  7. Fazelirad H, Taher MA, Ashkenani H (2014) Use of nanoporous Cu(II) ion imprinted polymer as a new sorbent for preconcentration of Cu(II) in water, biological, and agricultural samples and its determination by electrothermal atomic absorption spectrometry. J AOAC Int 97:1159–1166

    Article  CAS  Google Scholar 

  8. U.S. Environmental Protection Agency Report EPA/625/R-04/108 (2004)

  9. Pineau A, Fauconneau B, Marrauld A, Lebeau A, Hankard R, Guillard O (2015) Optimisation of direct copper determination in human breast milk without digestion by Zeeman graphite furnace atomic absorption spectrophotometry with two chemical modifiers. Biol Trace Elem Res 166:119–122

    Article  CAS  Google Scholar 

  10. AlOthman Z, Unsal YE, Habila M, Shabaka A, Tuzen M, Soylak M (2015) Determination of copper in food and water by dispersive liquid-liquid microextraction and flame atomic absorption spectrometry. Anal Lett 48:1738–1750

    Article  CAS  Google Scholar 

  11. Ouyang A, Jiang L, Liu Y, Jiang L, Hao Y, He B (2015) Determination of copper and zinc pollutants in Ludwigia prostrata Roxb using near-infrared reflectance spectroscopy (NIRS). Appl Spectrosc 69:370–376

    Article  CAS  Google Scholar 

  12. Hien NK, Bao NC, Nhung NTA, Trung NT, Nam PC, Duong T, Kim JS, Quang DT (2015) A highly sensitive fluorescent chemosensor for simultaneous determination of Ag(I), Hg(II), and Cu(II) ions: design, synthesis, characterization and application. Dyes Pigm 116:89–96

    Article  CAS  Google Scholar 

  13. LaFerriere BD, Maiti TC, Arnquist IJ, Hoppe EW (2015) A novel assay method for the trace determination of Th and U in copper and lead using inductively coupled plasma mass spectrometry. Nucl Instrum Methods Phys Res A 775:93–98

    Article  CAS  Google Scholar 

  14. Ali TA, Mohamed GG, El-Dessouky MMI, El-Ella SMA, Mohamed RTF (2013) Modified screen-printed electrode for potentiometric determination of copper(II) in water samples. J Solution Chem 42:1336–1354

    Article  CAS  Google Scholar 

  15. Ghaedi M, Naderi S, Montazerozohori M, Sahraei R, Daneshfar A, Taghavimoghadam N (2012) Modified carbon paste electrodes for Cu(II) determination. Mater Sci Eng C 32:2274–2279

    Article  CAS  Google Scholar 

  16. Gupta VK, Singh LP, Singh R, Upadhyay N, Kaur SP, Sethi B (2012) A novel copper (II) selective sensor based on dimethyl 4, 4′ (o-phenylene) bis(3-thioallophanate) in PVC matrix. J Mol Liq 174:11–16

    Article  CAS  Google Scholar 

  17. Koçak B, Er E, Çelikkan H (2015) Stripping voltammetric analysis of dicofol on graphene-modified glassy carbon electrode. Ionics 21:2337–2344

  18. Vu H, Nguyen LH, Nguyen T, Nguyen H, Nguyen T, Tran D (2015) Anodic stripping voltammetric determination of Cd2+ and Pb2+ using interpenetrated MWCNT/P1,5-DAN as an enhanced sensing interface. Ionics 21:571–578

    Article  CAS  Google Scholar 

  19. Fan W, Wang X, Li X, Xue F (2015) Determination of metallothionein in Daphnia magna by modified square wave cathodic stripping voltammetry. Electrochem Commun 52:17–20

    Article  CAS  Google Scholar 

  20. Guha K, Mascarenhas R, Thomas T, D’Souza O (2014) Differential pulse anodic stripping voltammetric determination of Hg2+ at poly(Eriochrome Black T)-modified carbon paste electrode. Ionics 20:849–856

    Article  CAS  Google Scholar 

  21. Hevia K, Arancibia V, Rojas-Romo C (2015) Levels of copper in sweeteners, sugar, tea, coffee and mate infusions. Determination by adsorptive stripping voltammetry in the presence of α-lipoic acid. Microchem J 119:11–16

    Article  CAS  Google Scholar 

  22. Jahandari S, Taher MA, Fazelirad H (2014) Evaluation of a new multi-walled carbon nanotube paste electrode modified with Alizarin Red S for the determination of tellurium by differential pulse stripping voltammetry. Int J Environ Anal Chem 94:930–942

    Article  CAS  Google Scholar 

  23. Fazelirad H, Taher MA (2014) Preconcentration of ultra-trace amounts of iron and antimony using ion pair solid phase extraction with modified multi-walled carbon nanotubes. Microchim Acta 181:655–662

    Article  CAS  Google Scholar 

  24. Fazelirad H, Taher MA (2013) Ligandless, ion pair-based and ultrasound assisted emulsification solidified floating organic drop microextraction for simultaneous preconcentration of ultra-trace amounts of gold and thallium and determination by GFAAS. Talanta 103:375–383

    Article  CAS  Google Scholar 

  25. Goswami S, Chakrabarty R (2009) Fluorescence sensing of Cu2+ within a pseudo 18-crown-6 cavity. Tetrahedron Lett 50:5910–5913

    Article  CAS  Google Scholar 

  26. Tang Y-H, Qu Y, Song Z, He X-P, Xie J, Hua J, Chen G-R (2012) Discovery of a sensitive Cu(II)-cyanide “off-on” sensor based on new C-glycosyl triazolyl bis-amino acid scaffold. Org Biomol Chem 10:555–560

    Article  CAS  Google Scholar 

  27. Shi D-T, Zhang B, Yang Y-X, Guan C-C, He X-P, Li Y-C, Chen G-R, Chen K (2013) Bis-triazolyl indoleamines as unique “off-approach-on” chemosensors for copper and fluorine. Analyst 138:2808–2811

    Article  CAS  Google Scholar 

  28. Zhang Y-J, He X-P, Hu M, Li Z, Shi X-X, Chen G-R (2011) Highly optically selective and electrochemically active chemosensor for copper (II) based on triazole-linked glucosyl anthraquinone. Dyes Pigm 88:391–395

    Article  CAS  Google Scholar 

  29. Faucher S, Cugnet C, Authier L, Lespes G (2014) Determination of total and electrolabile copper in agricultural soil by using disposable modified-carbon screen-printed electrodes. Anal Bioanal Chem 406:1249–1252

    Article  CAS  Google Scholar 

  30. Dai X, Compton RG (2005) Determination of copper in the presence of various amounts of arsenic with L-cysteine modified gold electrodes. Electroanalysis 17:1835–1840

    Article  CAS  Google Scholar 

  31. Javanbakht M, Badiei A, Ganjali MR, Norouzi P, Hasheminasab A, Abdouss M (2007) Use of organofunctionalized nanoporous silica gel to improve the lifetime of carbon paste electrode for determination of copper(II) ions. Anal Chim Acta 601:172–182

    Article  CAS  Google Scholar 

  32. Attar T, Dennouni-Medjati N, Harek Y, Larabi L (2013) The application of differential pulse cathodic stripping voltammetry in the determination of trace copper in whole blood. J Sens Instrum 1:31–38

    Google Scholar 

  33. Ashrafi AM, Vytras K (2012) New procedures for voltammetric determination of copper (II) using antimony film-coated carbon paste electrodes. Electrochim Acta 73:112–117

    Article  CAS  Google Scholar 

  34. Janegitz BC, Marcolino-Junior LH, Campana-Filho SP, Faria RC, Fatibello-Filho O (2009) Anodic stripping voltammetric determination of copper(II) using a functionalized carbon nanotubes paste electrode modified with crosslinked chitosan. Sens Actuators B 142:260–266

    Article  CAS  Google Scholar 

  35. Canpolat EC, Sar E, Coskun NY, Cankurtaran H (2007) Determination of trace amounts of copper in tap water samples with a Calix[4]arene modified carbon paste electrode by differential pulse anodic stripping voltammetry. Electroanalysis 19:1109–1115

    Article  CAS  Google Scholar 

  36. Takeuchi RM, Santos AL, Padilha PM, Stradiotto NR (2007) Copper determination in ethanol fuel by differential pulse anodic stripping voltammetry at a solid paraffin-based carbon paste electrode modified with 2-aminothiazole organofunctionalized silica. Talanta 71:771–777

    Article  CAS  Google Scholar 

  37. Ashkenani H, Taher MA (2012) Selective voltammetric determination of Cu(II) based on multiwalled carbon nanotube and nano-porous Cu-ion imprinted polymer. J Electroanal Chem 683:80–87

    Article  CAS  Google Scholar 

  38. Mohadesi A, Taher MA (2007) Voltammetric determination of Cu(II) in natural waters and human hair at a meso-2,3-dimercaptosuccinic acid self-assembled gold electrode. Talanta 72:95–100

    Article  CAS  Google Scholar 

  39. Cesarino I, Marino G, do Rosario Matos J, Cavalheiro ETG (2008) Evaluation of a carbon paste electrode modified with organofunctionalised SBA-15 nanostructured silica in the simultaneous determination of divalent lead, copper and mercury ions. Talanta 75:15–21

    Article  CAS  Google Scholar 

  40. Zhihua W, Xiaole L, Jianming Y, Yaxin Q, Xiaoquan L (2011) Copper(II) determination by using carbon paste electrode modified with molecularly imprinted polymer. Electrochim Acta 58:750–756

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mojtaba Nasiri-Majd.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasiri-Majd, M., Taher, M.A. & Fazelirad, H. Preparation and application of a simple electrochemical sensor for the determination of copper in some real and standard samples. Ionics 22, 289–296 (2016). https://doi.org/10.1007/s11581-015-1533-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-015-1533-9

Keywords

Navigation