Skip to main content
Log in

A stiffness-tunable soft actuator inspired by helix for medical applications

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

This paper introduces the stiffness-tunable soft actuator (STSA), a novel device that combines a silicone body with a thermoplastic resin structure (TPRS). The STSA’s design allows for the variable stiffness of soft robots, significantly increasing their potential for use in medical scenarios such as minimally invasive surgeries (MIS). By adjusting the stiffness of the STSA, it is possible to enhance the robot’s dexterity and adaptability, making it a promising tool for performing complex tasks in narrow and delicate spaces.

Methods

The stiffness of the STSA can be modulated by altering the temperature of the TPRS, which has been inspired by the helix and is integrated into the soft actuator to achieve a broad range of stiffness modulation while maintaining flexibility. The STSA has been designed with both diagnostic and therapeutic functions in mind, with the hollow area of the TPRS serving as an instrument channel for delivering surgical instruments. Additionally, the STSA features three uniformly arranged pipelines for actuation by air or tendon, and can be expanded with more functional chambers for endoscopy, illumination, water injection, and other purposes.

Results

Experimental results show that the STSA can achieve a maximum 30-fold stiffness tuning, providing a significant improvement in load capacity and stability when compared to pure soft actuators (PSAs). Of particular importance, the STSA is capable of achieving stiffness modulation below 45 °C, thereby ensuring a safe entry into the human body and creating an environment conducive to the normal operation of surgical instruments such as endoscope.

Conclusion

The experimental findings indicate that the soft actuator with TPRS can achieve a broad range of stiffness modulation while retaining flexibility. Moreover, the STSA can be designed to have a diameter of 8–10 mm, which satisfies the diameter requirements of a bronchoscope. Furthermore, the STSA has the potential to be utilized for clamping and ablation in a laparoscopic scenario, thereby demonstrating its potential for clinical use. Overall, these results suggest that the STSA has significant promise for use in medical applications, particularly in the context of minimally invasive surgeries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Burgner-Kahrs J, Rucker DC, Choset H (2015) Continuum robots for medical applications: a survey. IEEE Trans Robot 31:1261–1280. https://doi.org/10.1109/tro.2015.2489500

    Article  Google Scholar 

  2. Runciman M, Darzi A, Mylonas GP (2019) Soft robotics in minimally invasive surgery. Soft Robot 6(4):423–443. https://doi.org/10.1089/soro.2018.0136

    Article  PubMed  PubMed Central  Google Scholar 

  3. Anderson PL, Lathrop RA, Webster RJ (2016) Robot-like dexterity without computers and motors: a review of hand-held laparoscopic instruments with wrist-like tip articulation. Expert Rev Med Devices 13:661–672. https://doi.org/10.1586/17434440.2016.1146585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rus D, Tolley MT (2015) Design, fabrication and control of soft robots. Nature 521(7553):467–475. https://doi.org/10.1038/nature14543

    Article  CAS  PubMed  Google Scholar 

  5. Majidi C (2014) Soft robotics: a perspective—current trends and prospects for the future. Soft Robot 1:5–11. https://doi.org/10.1089/soro.2013.0001

    Article  Google Scholar 

  6. Yap HK, Ng HY, Yeow CH (2016) High-force soft printable pneumatics for soft robotic applications. Soft Robot 3(3):144–158. https://doi.org/10.1089/soro.2016.0030

    Article  Google Scholar 

  7. Manti M, Cacucciolo V, Cianchetti M (2016) Stiffening in soft robotics: a review of the state of the art. IEEE Robot Autom Mag 23(3):93–106. https://doi.org/10.1109/mra.2016.2582718

    Article  Google Scholar 

  8. Wang L, Yang Y, Chen Y, Majidi C, Iida F, Askounis E, Pei Q (2018) Controllable and reversible tuning of material rigidity for robot applications. Mater Today 21(5):563–576. https://doi.org/10.1016/j.mattod.2017.10.010

    Article  CAS  Google Scholar 

  9. Li Z, Ren H, Chiu PWY, Du R, Yu H (2016) A novel constrained wire-driven flexible mechanism and its kinematic analysis. Mech Mach Theory 95:59–75. https://doi.org/10.1016/j.mechmachtheory.2015.08.019

    Article  Google Scholar 

  10. Ge L, Chen F, Wang D, Zhang Y, Han D, Wang T, Gu G (2020) Design, modeling, and evaluation of fabric-based pneumatic actuators for soft wearable assistive gloves. Soft Robot 7(5):583–596. https://doi.org/10.1089/soro.2019.0105

    Article  PubMed  Google Scholar 

  11. Abondance S, Teeple CB, Wood RJ (2020) A dexterous soft robotic hand for delicate in-hand manipulation. IEEE Robot Autom Lett 5(4):5502–5509. https://doi.org/10.1109/lra.2020.3007411

    Article  Google Scholar 

  12. Cianchetti M, Ranzani T, Gerboni G, Nanayakkara T, Althoefer K, Dasgupta P, Menciassi A (2014) Soft robotics technologies to address shortcomings in today’s minimally invasive surgery: the STIFF-FLOP approach. Soft Robot 1(2):122–131. https://doi.org/10.1089/soro.2014.0001

    Article  Google Scholar 

  13. Calisti M, Picardi G, Laschi C (2017) Fundamentals of soft robot locomotion. J R Soc Interface 14(130):20170101. https://doi.org/10.1098/rsif.2017.0101

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kim HJ, Kawamura A, Nishioka Y, Kawamura S (2018) Mechanical design and control of inflatable robotic arms for high positioning accuracy. Adv Robot 32(2):89–104. https://doi.org/10.1080/01691864.2017.1405845

    Article  Google Scholar 

  15. Russo S, Ranzani T, Gafford J, Walsh CJ, & Wood RJ (2016) Soft pop-up mechanisms for micro surgical tools: Design and characterization of compliant millimeter-scale articulated structures. In: 2016 IEEE international conference on robotics and automation (ICRA). IEEE, pp 750–757. https://doi.org/10.1109/icra.2016.7487203

  16. Shian S, Bertoldi K, Clarke DR (2015) Dielectric elastomer based “grippers” for soft robotics. Adv Mater 27(43):6814–6819. https://doi.org/10.1002/adma.201503078

    Article  CAS  PubMed  Google Scholar 

  17. Chin L, Yuen MC, Lipton J, Trueba LH, Kramer-Bottiglio R, Rus D (2019) A simple electric soft robotic gripper with high-deformation haptic feedback. In: 2019 international conference on robotics and automation (ICRA). IEEE, pp 2765–2771. https://doi.org/10.1109/icra.2019.8794098

  18. Tolley MT, Shepherd RF, Karpelson M, Bartlett NW, Galloway KC, Wehner M, Wood RJ (2014) An untethered jumping soft robot. In: 2014 IEEE/RSJ international conference on intelligent robots and systems. IEEE, pp 561–566. https://doi.org/10.1109/iros.2014.6942615

  19. Ross D, Nemitz MP, Stokes AA (2016) Controlling and simulating soft robotic systems: insights from a thermodynamic perspective. Soft Robot 3(4):170–176. https://doi.org/10.1089/soro.2016.0010

    Article  Google Scholar 

  20. Zhang M, Li G, Yang X, Xiao Y, Yang T, Wong TW, Li T (2018) Artificial muscle driven soft hydraulic robot: electromechanical actuation and simplified modeling. Smart Mater Struct 27(9):095016. https://doi.org/10.1089/soro.2016.0010

    Article  Google Scholar 

  21. Zhang B, Hu C, Yang P, Liao Z, Liao H (2019) Design and modularization of multi-DoF soft robotic actuators. IEEE Robot Autom Lett 4(3):2645–2652. https://doi.org/10.1109/lra.2019.2911823

    Article  Google Scholar 

  22. Venkiteswaran VK, Samaniego LFP, Sikorski J, Misra S (2019) Bio-inspired terrestrial motion of magnetic soft millirobots. IEEE Robot Autom Lett 4(2):1753–1759. https://doi.org/10.1109/lra.2019.2898040

    Article  Google Scholar 

  23. Picod G, Jambon AC, Vinatier D, Dubois PJSE (2005) What can the operator actually feel when performing a laparoscopy? Surg Endosc Other Interv Tech 19(1):95–100. https://doi.org/10.1007/s00464-003-9330-3

    Article  CAS  Google Scholar 

  24. Shintake J, Schubert B, Rosset S, Shea H, Floreano D (2015) Variable stiffness actuator for soft robotics using dielectric elastomer and low-melting-point alloy. In: 2015 IEEE/RSJ international conference on intelligent robots and systems (IROS). IEEE, pp 1097–1102. https://doi.org/10.1109/iros.2015.7353507

  25. Takahashi R, Sun TL, Saruwatari Y, Kurokawa T, King DR, Gong JP (2018) Creating stiff, tough, and functional hydrogel composites with low-melting-point alloys. Adv Mater 30(16):1706885. https://doi.org/10.1002/adma.201706885

    Article  CAS  Google Scholar 

  26. Takashima K, Sugitani K, Morimoto N, Sakaguchi S, Noritsugu T, Mukai T (2014) Pneumatic artificial rubber muscle using shape-memory polymer sheet with embedded electrical heating wire. Smart Mater Struct 23(12):125005. https://doi.org/10.1088/0964-1726/23/12/125005

    Article  Google Scholar 

  27. Yuen MC, Bilodeau RA, Kramer RK (2016) Active variable stiffness fibers for multifunctional robotic fabrics. IEEE Robot Autom Lett 1(2):708–715. https://doi.org/10.1109/lra.2016.2519609

    Article  Google Scholar 

  28. Majidi C, Wood RJ (2010) Tunable elastic stiffness with microconfined magnetorheological domains at low magnetic field. Appl Phys Lett 97(16):164104. https://doi.org/10.1063/1.3503969

    Article  CAS  Google Scholar 

  29. McCracken JM, Donovan BR, White TJ (2020) Materials as machines. Adv Mater 32(20):1906564. https://doi.org/10.1002/adma.201906564

    Article  CAS  Google Scholar 

  30. Sun T, Chen Y, Han T, Jiao C, Lian B, Song Y (2020) A soft gripper with variable stiffness inspired by pangolin scales, toothed pneumatic actuator and autonomous controller. Roboti Comput Integr Manuf 61:1018. https://doi.org/10.1016/j.rcim.2019.101848

    Article  Google Scholar 

  31. Shah DS, Yang EJ, Yuen MC, Huang EC, Kramer-Bottiglio R (2021) Jamming skins that control system rigidity from the surface. Adv Func Mater 31(1):2006915. https://doi.org/10.1002/adfm.202006915

    Article  CAS  Google Scholar 

  32. Choi J, Lee DY, Eo JH, Park YJ, Cho KJ (2021) Tendon-driven jamming mechanism for configurable variable stiffness. Soft Robot 8(1):109–118. https://doi.org/10.1089/soro.2019.0080

    Article  PubMed  Google Scholar 

  33. Jiang Y, Chen D, Liu C, Li J (2019) Chain-like granular jamming: a novel stiffness-programmable mechanism for soft robotics. Soft Robot 6(1):118–132. https://doi.org/10.1089/soro.2018.0005

    Article  PubMed  Google Scholar 

  34. Li L, Xie F, Wang T, Wang G, Tian Y, Jin T, Zhang Q (2022) Stiffness-tunable soft gripper with soft-rigid hybrid actuation for versatile manipulations. Soft Robot. https://doi.org/10.1089/soro.2021.0025

    Article  PubMed  PubMed Central  Google Scholar 

  35. Al-Rubaiai M, Pinto T, Qian C, Tan X (2019) Soft actuators with stiffness and shape modulation using 3D-printed conductive polylactic acid material. Soft Robot 6(3):318–332. https://doi.org/10.1089/soro.2018.0056

    Article  PubMed  Google Scholar 

  36. Yan J, Shi P, Xu Z, Zhao J (2022) A wide-range stiffness-tunable soft actuator inspired by deep-sea glass sponges. Soft Robot 9(3):625–637. https://doi.org/10.1089/soro.2020.0163

    Article  PubMed  Google Scholar 

  37. Yarmolenko PS, Moon EJ, Landon C, Manzoor A, Hochman DW, Viglianti BL, Dewhirst MW (2011) Thresholds for thermal damage to normal tissues: an update. Int J Hyperth 27(4):320–343. https://doi.org/10.3109/02656736.2010.534527

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge supports from National Key Research and Development Program of China (2022YFC2405200), National Natural Science Foundation of China (82027807, U22A2051), Beijing Municipal Natural Science Foundation (7212202), Institute for Intelligent Healthcare, Tsinghua University (2022ZLB001), and Tsinghua-Foshan Innovation Special Fund (2021THFS0104).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongen Liao.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, S., Hu, C., Ma, L. et al. A stiffness-tunable soft actuator inspired by helix for medical applications. Int J CARS 18, 1625–1638 (2023). https://doi.org/10.1007/s11548-023-02902-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-023-02902-5

Keywords

Navigation