Skip to main content

Advertisement

Log in

Efficient physics-based tracking of heart surface motion for beating heart surgery robotic systems

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

Tracking of beating heart motion in a robotic surgery system is required for complex cardiovascular interventions.

Methods

A heart surface motion tracking method is developed, including a stochastic physics-based heart surface model and an efficient reconstruction algorithm. The algorithm uses the constraints provided by the model that exploits the physical characteristics of the heart. The main advantage of the model is that it is more realistic than most standard heart models. Additionally, no explicit matching between the measurements and the model is required. The application of meshless methods significantly reduces the complexity of physics-based tracking.

Results

Based on the stochastic physical model of the heart surface, this approach considers the motion of the intervention area and is robust to occlusions and reflections. The tracking algorithm is evaluated in simulations and experiments on an artificial heart. Providing higher accuracy than the standard model-based methods, it successfully copes with occlusions and provides high performance even when all measurements are not available.

Conclusions

Combining the physical and stochastic description of the heart surface motion ensures physically correct and accurate prediction. Automatic initialization of the physics-based cardiac motion tracking enables system evaluation in a clinical environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chomiac P, Bose S, Page M (2001) Beating heart bypass surgery. Medtronic Cardiac Surgery, Grand Rapids

    Google Scholar 

  2. Jacobs S, Holzhey D, Kiaii BB, Onnasch JF, Walther T, Mohr FW, Falk V (2003) Limitations for manual and telemanipulator-assisted motion tracking—implications for endoscopic beating-heart surgery. Ann Thorac Surg 76: 2029–2036

    Article  PubMed  Google Scholar 

  3. Falk V (2002) Manual control and tracking—a human factor analysis relevant for beating heart surgery. Ann Thorac Surg 74: 624–628

    Article  PubMed  Google Scholar 

  4. Çavuşoǧlu MC, Rotella J, Newman WS, Choi S, Ustin J, Sastry SS (2005) Control algorithms for active relative motion cancelling for robotic assisted off-pump coronary artery bypass graft surgery. In: Proceedings of the 12th international conference on advanced robotics (ICAR 2005), Seattle, USA, pp 431–436

  5. Nyquist H (1928) Certain topics in telegraph transmission theory. Proc IEEE 47: 617–644

    Google Scholar 

  6. Nakamura Y, Kishi K, Kawakami H (2001) Heartbeat synchronization for robotic cardiac surgery. In: Proceedings of the IEEE international conference on robotics and automation (ICRA 2001), Seoul, Korea, pp 2014–2019

  7. Stoyanov D, Mylonas GP, Deligianni F, Darzi A, Yang GZ (2005) Soft-tissue motion tracking and structure estimation for robotic assisted MIS procedures. In: Proceedings of the medical image computing and computer assisted interventions (MICCAI 2005), vol 2, pp 139–146

  8. Ramey NA, Corso JJ, Lau WW, Burschka D, Hager GD (2004) Real-time 3D surface tracking and its applications. In: Proceedings of the 2004 conference on computer vision and pattern recognition workshop (CVPRW 2004)

  9. Lau WW, Ramey NA, Corso JJ, Thakor NV, Hager GD (2004) Stereo-based endoscopic tracking of cardiac surface deformation. In: Proceedings of the international conference on medical image computing and computer-assisted intervention (MICCAI 2004), pp 494–501

  10. Richa R, Poignet P, Liu C (2008) Efficient 3D tracking for motion compensation in beating heart surgery. In: Proceeding of the medical image computing and computer-assisted intervention (MICCAI 2008), vol 5242, pp 684–691

  11. Sauvée M, Poignet P, Triboulet J, Dombre E, Malis E, Demaria R (2006) 3D heart motion estimation using endoscopic monocular vision system. In: Proceeding of the IFAC symposium on modeling and control in biomedical systems, pp 1–6

  12. Noce A, Triboulet J, Poignet P (2007) Efficient tracking of the heart using texture. In: Proceedings of the annual international conference of the IEEE engineering in medicine and biology society (EMBS 2007), Lyon, France, pp 4480–4483

  13. Sauvée M, Noce A, Poignet P, Triboulet J, Dombre E (2007) Three-dimensional heart motion estimation using endoscopic monocular vision system: from artificial landmarks to texture analysis. In: Proceeding of the IFAC symposium on modeling and control in biomedical systems, 3, vol 2, pp 199–207

  14. Ortmaier T, Groeger M, Boehm DH, Falk V, Hirzinger G (2005) Motion estimation in beating heart surgery. IEEE Trans Biomed Eng 52(10): 1729–1740

    Article  PubMed  Google Scholar 

  15. Bebek Ö, Çavuşoǧlu MC (2007) Intelligent control algorithms for robotic-assisted beating heart surgery. IEEE Trans Robot 23(3): 468–480

    Article  Google Scholar 

  16. Richa R, Poignet P, Liu C (2008) Deformable motion tracking of the heart surface. In: Proceedings of the 2008 IEEE international conference on intelligent robots and systems (IROS 2008)

  17. Bader T, Wiedemann A, Roberts K, Hanebeck UD (2007) Model–based motion estimation of elastic surfaces for minimally invasive cardiac surgery. In: Proceedings of the 2007 IEEE international conference on robotics and automation (ICRA 2007), Rome, Italy, pp 2261–2266. doi:10.1109/ROBOT.2007.363656

  18. Bogatyrenko E, Hanebeck UD, Szabo G (2009) Heart surface motion estimation framework for robotic surgery employing meshless methods. In: Proceedings of the 2009 IEEE/RSJ international conference on intelligent robots and systems (IROS 2009)

  19. Shi P, Liu H (2002) Stochastic finite element framework for cardiac kinematics function and material property analysis. In: Proceedings of the medical image computing and computer-assisted intervention (MICCAI 2002), pp 634–641

  20. Sermesant M, Moireau P, Camara O, Sainte-Marie J, Andriantsimiavona R, Cimrman R, Hill D, Chapelle D, Razavi R (2006) Cardiac function estimation from MRI using a heart model and data assimilation: advances and difficulties. Funct Imaging Model Heart 10: 642–656

    CAS  Google Scholar 

  21. Hartley R, Zisserman A (2000) Multiple view geometry in computer vision. Cambridge University Press, Cambridge

    Google Scholar 

  22. Mulligan J, Isler V, Daniilidis K (2001) Trinocular stereo: a real-time algorithm and its evaluation. Int J Comput Vis 27: 51–61

    Google Scholar 

  23. Zahorec R, Holoman M (1997) Transatrial access for left atrial pressure monitoring in cardiac surgery patients. Eur J Cardio-Thorac Surg 11: 379–380

    Article  CAS  Google Scholar 

  24. Atluri SN, Han ZD, Liu HT (2006) Meshless local Petrov-Galerkin (MLPG) mixed collocation method for elasticity problems. Tech Sci Press CMES 14(3): 141–152

    Google Scholar 

  25. Liu GR (2003) Mesh free methods: moving beyond the finite element methods. CRC Press, Boca Raton

    Google Scholar 

  26. Liu GR (2005) An introduction to meshfree methods and their programming. Springer, Dordrecht

    Google Scholar 

  27. Uciński D (2005) Optimal measurement methods for distributed parameter system identification. CRC Press, Boca Raton

    Google Scholar 

  28. Kalman RE (1960) A new approach to linear filtering and prediction problems. Trans ASME J Basic Eng 82: 35–45

    Google Scholar 

  29. Yuen SG, Novotny PM, Howe RD (2008) Quasiperiodic predictive filtering for robot-assisted beating heart surgery. In: Proceeding of the IEEE international conference on robotics and automation (ICRA 2008), Pasadena, CA, USA, pp 3875–3880

  30. Box G, Jenkins GM, Reinsel GC (1994) Time series analysis: forecasting and control. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  31. Cattina P, Daveb H, Gruenenfelder J, Szekelya G, Turin M, Zuend G (2004) Trajectory of coronary motion and its significance in robotic motion cancellation. Eur J Cardio-Thorac Surg 25: 786–790

    Article  Google Scholar 

  32. Allied Vision Technologies GmbH: PIKE technical manual V4.2.0 (2009)

  33. Svoboda T, Martinec D, Pajdla T (2005) A convenient multi-camera self-calibration for virtual environments. Presence Teleoper Virt Environ 14(4): 1–26

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evgeniya Bogatyrenko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bogatyrenko, E., Pompey, P. & Hanebeck, U.D. Efficient physics-based tracking of heart surface motion for beating heart surgery robotic systems. Int J CARS 6, 387–399 (2011). https://doi.org/10.1007/s11548-010-0517-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-010-0517-5

Keywords

Navigation