Skip to main content

Advertisement

Log in

Predictive Model Reference Adaptive Controller to Compensate Heart Motion in Minimally Invasive CABG Surgery

  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

Heart beating is a major challenge in minimally invasive coronary artery surgery. A promising solution is to develop a motion compensation robotic system that gives the surgeon an impression of operating on motionless tissue by synchronizing the surgical tool automatically with the heart tissue motion. To achieve higher control accuracy, an intelligent controller called Predictive Model Reference Adaptive Controller is presented herein, which is adapted not only by observed reference signals but, also by unknown reference signals that are not observed by a camera but could be predicted by a state space estimator. To develop such a system, first the heart surface motion is tracked by the Lucas–Kanade tracking algorithm and validated by human observation. The results of implementing this control algorithm on a real human heart data set show capability of achieving a motion compensation system with high control accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18

Similar content being viewed by others

References

  1. Bader, T., A. Wiedemann, K. Roberts, and U. D. Hanebeck. Model-based motion estimation of elastic surfaces for minimally invasive cardiac surgery. IEEE Int. Conf. Robot. Autom. 7:2261–2266, 2014.

    Google Scholar 

  2. Baker, S., and I. Matthews. Lucas–Kanade 20 years on: a unifying framework. Int. J. Comput. Vis. 56:221–255, 2004.

    Article  Google Scholar 

  3. Bay, H., A. Ess, T. Tuytelaars, and L. Van Gool. speeded-up robust features (SURF). Comput. Vis. Image Underst. 110:346–359, 2008.

    Article  Google Scholar 

  4. Bebek, O., and M. C. Cavusoglu. Intelligent control algorithms for robotic-assisted beating heart surgery. IEEE Trans. Rob. 23:468–480, 2007.

    Article  Google Scholar 

  5. Bogatyrenko, E. Physics-based probabilistic motion compensation of elastically deformable objects. Ph.D. Dissertation, Karlsruhe Institute of Technology, Karlsruhe, Germany, 2012.

  6. Bogatyrenko, E., U. D. Hanebeck, Simultaneous state and parameter estimation for physics-based tracking of heart surface motion. In: IEEE Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), 2010, pp. 109–114.

  7. Bogatyrenko, E., U. D. Hanebeck, and G. Szabo, Heart surface motion estimation framework for robotic surgery employing meshless methods. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS, 2009, pp. 67–74.

  8. Bogatyrenko, E., E. Noack, and U. D. Hanebeck, Reliable estimation of heart surface motion under stochastic and unknown but bounded systematic uncertainties. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2010, pp. 1862–1869.

  9. Bogatyrenko, E., P. Pompey, and U. Hanebeck. Efficient physics-based tracking of heart surface motion for beating heart surgery robotic systems. Int. J. Comput. Assist. Radiol. Surg. 6:387–399, 2011.

    Article  Google Scholar 

  10. Davinchisurgery, available on 05/01/2015 at http://www.davincisurgery.com/da-vinci-cardiac/conditions/coronary-artery-disease/da-vinci-surgery.php.

  11. Dodge, Jr, J. T., B. G. Brown, E. L. Bolson, and H. T. Dodge. Lumen diameter of normal human coronary arteries. Influence of age, sex, anatomic variation, and left ventricular hypertrophy or dilation. Circulation 86:232–246, 1992.

    Article  Google Scholar 

  12. Elhawary, H., and A. Popovic. Robust feature tracking on the beating heart for a robotic-guided endoscope. Int. J. Med. Robot. Comput. Assist. Surg. 7:459–468, 2011.

    Article  Google Scholar 

  13. Emedicinehealth, available on 05/01/2015 at http://www.emedicinehealth.com/how_the_heart_works-health/article_em.htm.

  14. Ginhoux, R., J. Gangloff, M. de Mathelin, L. Soler, M. M. A. Sanchez, and J. Marescaux. Active filtering of physiological motion in robotized surgery using predictive control. IEEE Trans. Robot. 21:67–79, 2005.

    Article  Google Scholar 

  15. Hagan, M. T., H. B. Demuth, and M. Beale, Neural Network Design, Boston: PWS Publishing Co., 1996.

  16. Hamlyn Centre Laparoscopic/Endoscopic Video Datasets, available on 05/01/2015 at http://hamlyn.doc.ic.ac.uk/vision/.

  17. Hu, M., G. Penney, M. Figl, P. Edwards, F. Bello, R. Casula, et al. Reconstruction of a 3D surface from video that is robust to missing data and outliers: Application to minimally invasive surgery using stereo and mono endoscopes. Med. Image Anal. 16:597–611, 2012.

    Article  Google Scholar 

  18. Johns Hopkins Medicine, available on 05/01/2015 at http://www.hopkinsmedicine.org/healthlibrary/test_procedures/cardiovascular/coronary_artery_bypass_graft_surgery_cabg_92,P07967/.

  19. Kroon, D.-J. Lucas Kanade affine template tracking, available on 05/01/2015 at http://www.mathworks.com/matlabcentral/fileexchange/24677-lucas-kanade-affine-template-tracking.

  20. Lemma, M., A. Mangini, A. Redaelli, and F. Acocella. Do cardiac stabilizers really stabilize? Experimental quantitative analysis of mechanical stabilization. Interact. CardioVasc. Thorac. Surg. 4:222–226, 2005.

    Article  Google Scholar 

  21. Ljung, L. System identification: theory for the user, 2 ed. Englewood Cliffs: PrenticeHall PTR, 1999.

  22. Lucas, B. D., T. Kanade. An iterative image registration technique with an application to stereo vision, In: Proceedings of the 7th International Joint Conference on Artificial Intelligence—Vol. 2, 1981, pp. 674–679.

  23. Marquardt, D. W. An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math. 11:431–441, 1963.

    Article  MathSciNet  MATH  Google Scholar 

  24. Mountney, P., D. Stoyanov, and Y. Guang-Zhong. Three-dimensional tissue deformation recovery and tracking. Signal Process. Mag. IEEE 27:14–24, 2010.

    Article  Google Scholar 

  25. Narendra, K. S., and K. Parthasarathy. Identification and control of dynamical systems using neural networks. IEEE Trans. Neural Netw. 1:4–27, 1990.

    Article  Google Scholar 

  26. National Heart Lung And Blood Institute, available on 05/01/2015 at http://www.nhlbi.nih.gov/health/health-topics/topics/cabg.

  27. Richa, R. Robust 3D motion tracking for robotic-assisted beating heart surgery, Ph.D. Dissertation, University of Montpellier Montpellier, France, 2010.

  28. Richa, R., A. P. L. Bó, and P. Poignet. Towards robust 3D visual tracking for motion compensation in beating heart surgery. Med. Image Anal. 15:302–315, 2011.

    Article  Google Scholar 

  29. Roberts, K., U. D. Hanebeck. Motion estimation and reconstruction of a heart surface by means of 2D-/3D-membrane models, International Congress and Exhibition on Computer Assisted Radiology and Surgery (CARS), 2007.

  30. Sauvée, M., A. Noce, P. Poignet, J. Triboulet, and E. Dombre. Three-dimensional heart motion estimation using endoscopic monocular vision system: From artificial landmarks to texture analysis. Biomed. Signal Process. Control 2:199–207, 2007.

    Article  Google Scholar 

  31. Stamper, R. E. A Three degree of freedom parallel manipulator with only translational degrees of freedom, Ph.D. Dissertation, University of Maryland, College Park, Maryland, 1997.

  32. Thakral, A., J. Wallace, D. Tomlin, N. Seth, and N. Thakor, Surgical Motion Adaptive Robotic Technology (S.M.A.R.T): Taking the Motion out of Physiological Motion vol. 2208: Springer Berlin Heidelberg, 2001.

  33. Tuna, E. E., T. J. Franke, O. Bebek, A. Shiose, K. Fukamachi, and M. C. Cavusoglu. Heart motion prediction based on adaptive estimation algorithms for robotic-assisted beating heart surgery. IEEE Trans. Robot. 29:261–276, 2013.

    Article  Google Scholar 

  34. Wisegeek, available on 05/01/2015 at http://www.wisegeek.com/what-is-coronary-stenosis.htm.

  35. World Heath Organization, available on 05/01/2015 at http://www.who.int/mediacentre/factsheets/fs317/en/.

Download references

Acknowledgment

The authors would like to thank Dr. R. Richa with the National Institute for Digital Convergence (INCoD), Florianópolis, Brazil for his assistance in this paper.

Conflict of interest

There is not any conflict of interest in this paper.

Ethical Standards

The video of a CABG procedure on a human heart tissue was obtained from Hamlyn Centre Laparoscopic/Endoscopic Video Datasets at Imperial College London and this data set is available online.16 There is no animal involved in this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Mohamadipanah.

Additional information

Associate Editor Ajit P. Yoganathan oversaw the review of this article.

Appendix

Appendix

See Appendix Table 2.

Table 2 The manipulator masses.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohamadipanah, H., Hoberock, L.L. & Andalibi, M. Predictive Model Reference Adaptive Controller to Compensate Heart Motion in Minimally Invasive CABG Surgery. Cardiovasc Eng Tech 6, 329–339 (2015). https://doi.org/10.1007/s13239-015-0225-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-015-0225-y

Keywords

Navigation