Skip to main content
Log in

A triangular radial cubic spline deformation model for efficient 3D beating heart tracking

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

A novel deformable model is proposed for efficient 3D visual tracking of beating heart. The model is parameterized by the 3D coordinates of four control points: the three vertices and the circumcenter of a triangular target region. Nonlinear deformation on heart surfaces is handled by cubic spline interpolation based on radial pixel distances from the circumcenter. With a pre-computable design matrix, the model can be represented efficiently by a simple matrix equation. An iterative algorithm is developed based on the efficient second-order minimization to compute model parameters at each frame. The proposed tracking method is validated on the stereo-endoscopic videos of phantom heart and in vivo heart that are recorded by the da Vinci\(^{\tiny \textregistered }\) surgical system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nakamur, Y., Kishi, K., Kawakami, H.: Heartbeat synchronization for robotic cardiac surgery. In: IEEE International Conference on Robotics and Automation, pp. 2014–2019 (2001)

  2. Ortmaier, T., Groger, M., Boehm, D.H., Falk, V., Hirzinger, G.: Motion estimation in beating heart surgery. IEEE Trans. Biomed. Eng. 52(10), 1729–1740 (2005)

    Article  Google Scholar 

  3. Bebek, O., Cavusoglu, M.C.: Whisker-like position sensor for measuring physiological motion. IEEE/ASME Trans. Mechatron. 13(5), 538–547 (2008)

    Article  Google Scholar 

  4. Yuen, S.G., Kettler, D.T., Novotny, P.M., Plowes, R.D., Howe, R.D.: Robotic motion compensation for beating heart intracardiac surgery. Int. J. Robot. Res. 28(10), 1355–1372 (2009)

    Article  Google Scholar 

  5. Mountney, P., Stoyanov, D., Yang, G.Z.: Three-dimensional tissue deformation recovery and tracking. IEEE Signal Process. Mag. 27(4), 14–24 (2010)

    Article  Google Scholar 

  6. Bernhardt, S., Nicolau, S.A., Agnus, V., Marescaux, J.: Automatic localization of endoscope in intraoperative CT image: a simple approach to augmented reality guidance in laparoscopic surgery. Med. Image Anal. 30, 130–143 (2016)

    Article  Google Scholar 

  7. Bowyer, S.A., Ferdinando, R., Baena, F.: Deformation invariant bounding spheres for dynamic active constraints in surgery. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 228(4), 350–361 (2014)

    Article  Google Scholar 

  8. Lau, W., Ramey, N., Corso, J., Thakor, N., Hager, G.: Stereo-based endoscopic tracking of cardiac surface deformation, In: 7th International Conference on MICCAI, pp. 494–501 (2004)

  9. Stoyanov, D., Darzi, A., Yang, G.Z.: A practical approach towards accurate dense 3-D depth recovery for robotic laparoscopic surgery. Comput. Aid. Surg. 10(4), 199–208 (2005)

    Article  Google Scholar 

  10. Bader, T., Wiedermann, A., Roberts, K., Hanebeck, U. D.: Model-based motion estimation of elastic surfaces for minimally invasive cardiac surgery, In: IEEE International Conference on Robotics and Automation, pp. 2261–2266 (2007)

  11. Richa, R., Poignet, P., Liu, C.: Three-dimensional motion tracking for beating heart surgery using a thin-plate spline deformable model. Int. J. Robot. Res. 29(2–3), 218–230 (2010)

    Article  Google Scholar 

  12. Bogatyrenko, E., Pompey, P., Hanebeck, U.D.: Efficient physics-based tracking of heart surface motion for beating heart surgery robotic systems. Int. J. Comput. Assist. Radiol. Surg. 6(3), 387–399 (2011)

    Article  Google Scholar 

  13. Wong, W.K., Yang, B., Liu, C., Poignet, P.: A quasi-spherical triangle-based approach for efficient 3-D soft-tissue motion tracking. IEEE/ASME Trans. Mechatron. 18(5), 1472–1484 (2013)

    Article  Google Scholar 

  14. Hachani, M., Zaid, A.O., Puech, W.: Segmentation-based compression scheme for 3D animated models. Signal Image Video Process. 10(6), 1065–1072 (2016)

    Article  Google Scholar 

  15. Hazewinkel, M.: Encyclopaedia of Mathematics: Reaction–Diffusion Equation—Stirling Interpolation Formula. Springer, Dordrecht, Netherlands (1992)

  16. Ding, X., Kong, J., Yan, L., Yu, Z.: A novel stumpage detection method for forest harvesting based on multi-sensor fusion. Signal Image Video Process. 9(8), 1843–1850 (2015)

    Article  Google Scholar 

  17. Nabati, M., Behrad, A.: 3D Head pose estimation and camera mouse implementation using a monocular video camera. Signal Image Video Process. 9(1), 39–44 (2015)

    Article  Google Scholar 

  18. Benhimane, S., Malis, E.: Homography-based 2D visual tracking and servoing. Int. J. Robot. Res. 26(7), 661–676 (2007)

    Article  Google Scholar 

  19. Stoyanov, D., Visentini-Scarzanella, M., Pratt, P., Yang, G. Z.: Real-time stereo reconstruction in robotic assisted minimally invasive surgery, In: 13th Conference on MICCAI, pp. 275–282 (2010)

  20. Pratt, P., Stoyanov, D., Visentini-Scarzanella, M., Yang, G.Z.: Dynamic guidance for robotic surgery using image-constrained biomechanical models, In: 13th Conference on MICCAI, pp. 77–85 (2010)

  21. Stoyanov, D., Mylonas, G., Deligianni, F., Darzi, A., Yang, G.Z.: Soft-tissue motion tracking and structure estimation for robotic assisted MIS procedures, In: 8th Conference on MICCAI, pp. 139–146 (2005)

  22. Yang, B., Liu, C., Zheng, W., Liu, S.: Motion prediction via online instantaneous frequency estimation for vision-based beating heart tracking. Inf. Fusion 35, 58–67 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 61305022) and the Science and Technology Planning Project of Sichuan Province (No. 2015HH0022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Yang.

Electronic supplementary material

Appendices

Appendix 1: Interpolation polynomial of radial cubic spline

As shown in Fig. 1, the nonlinear interpolation for the distorted triangle is a 1D cubic spline interpolation, which is composed of two symmetric cubic polynomial segments, passing through the three knots \((-R, 0)\), \((0, d_o)\) and (R, 0) in the r-z plane.

Without loss of generality, we write the two cubic polynomials as

$$\begin{aligned} D_+(r)= & {} a_3r^3+a_2r^2+a_1r+a_0 \quad \mathrm{for}\quad 0\le r\le R \end{aligned}$$
(20)
$$\begin{aligned} D_-(r)= & {} D_+(-r)\quad \mathrm{for}\quad -R\le r\le 0 \end{aligned}$$
(21)

As the polynomials pass through the three knots, we can obtain

$$\begin{aligned} D_+(0)= & {} D_-(0)=d_o \end{aligned}$$
(22)
$$\begin{aligned} D_+(R)= & {} D_-(-R)=0 \end{aligned}$$
(23)

To make the spline as smooth as possible, the first and second derivatives should be continuous at the knots:

$$\begin{aligned} D_+^{'}(0)=D_-^{'}(0) \end{aligned}$$
(24)
$$\begin{aligned} D_+^{''}(0)=D_-^{''}(0) \end{aligned}$$
(25)

To achieve a “natural” spline, the second derivatives should be zero at the ends:

$$\begin{aligned} D_+^{''}(R)=D_-^{''}(-R)=0 \end{aligned}$$
(26)

From (22) to (26), we can derive that

$$\begin{aligned} a_3=\frac{d_o}{2R^3},~a_2=-\frac{3d_o}{2R^2},~a_1=0, ~\mathrm{and}~ a_0=d_o \end{aligned}$$
(27)

Accordingly, there is

$$\begin{aligned} D_+(r)=\left( \frac{r^3}{2R^3}-\frac{3r^2}{2R^2}+1\right) d_o \end{aligned}$$
(28)

Let \(r=\Vert \mathbf{m}-\mathbf{m}_o\Vert \) be the radial distance and \(d_o=D(\mathbf{m}_o)\). We obtain the interpolation function \(D(\mathbf{m})\).

Appendix 2: Jacobians computation

1.1 Computation of \(\mathbf{J}(\mathbf{I}_\mathrm{X} |{\varvec{\theta }})\)

The nth row of the Jacobian \(\mathbf{J}(\mathbf{I}_\mathrm{X}|{{\varvec{\theta }}})\) is the derivative of \(I_\mathrm{X}(\mathbf{m}_n^{(\mathrm{X})})\) at the current parameters \({\varvec{\theta }}\), which can be computed by the product of four sub-Jacobians

$$\begin{aligned} \nabla _{{\varvec{\theta }}}I_\mathrm{X}(\mathbf{m}_n^{(\mathrm{X})})\big |_{{\varvec{\theta }}} =\mathbf{J}_\mathrm{I}{} \mathbf{J}_{\varvec{{\mathrm{\Phi }}}}{} \mathbf{J}_\mathrm{C}{} \mathbf{J}_\mathrm{W} \end{aligned}$$
(29)
  1. (i)

    \(\mathbf{J}_\mathrm{I}=\nabla _\mathbf{m}I_\mathrm{X}(\mathbf{m})\big |_{\mathbf{m}_n^{(\mathrm{X})}}\) is a \(1\times 2\) matrix corresponding to the spatial derivative of the image \(I_\mathrm{X}\) at the warped pixel \(\mathbf{m}_n^{(\mathrm{X})}\).

  2. (ii)

    \(\mathbf{J}_{\varvec{{\mathrm{\Phi }}}}=\nabla _\mathbf{h}{{\varvec{\varPhi }}}(\mathbf{h})\big |_{\mathbf{h}_n^{(\mathrm{X})}}\) is a \(2\times 3\) matrix corresponding to the derivative of the function \({\varvec{\varPhi }}\) at the warped homogeneous coordinates \(\mathbf{h}_n^{(\mathrm{X})}\). Given \(\mathbf{h}_n^{(\mathrm{X})}=\left[ su, sv, s\right] ^\mathrm{T}\), the derivative is

    $$\begin{aligned} \mathbf{J}_{\varvec{{\mathrm{\Phi }}}}=\left[ \begin{array}{ccc} 1/s &{}\quad 0 &{}\quad -u/s\\ 0 &{}\quad 1/s &{}\quad -v/s \end{array}\right] \end{aligned}$$
    (30)
  3. (iii)

    \(\mathbf{J}_\mathrm{C}=\nabla _\mathbf{p}{} \mathbf{h}^{(\mathrm{X})}=\left[ \mathbf{C}_\mathrm{X}\right] _{3\times 3}\) is a constant matrix, where \([\mathbf{X}]_{a\times b}\) denotes the left \(a\times b\) sub-matrix of \(\mathbf X\) .

  4. (iv)

    \(\mathbf{J}_\mathrm{W}=\nabla _{{\varvec{\theta }}}{} \mathbf{W}(\mathbf{m}_n|{{\varvec{\varTheta }}})\) is a \(3\times 12\) constant matrix corresponding to the derivative of the wrapping mapping \(\mathbf W\) with respect to \({\varvec{\theta }}\) at \(\mathbf{m}_n\). Given \(\mathbf{q}(\mathbf{m}_n)\) in (11), it is written as

    $$\begin{aligned} \mathbf{J}_\mathrm{W}=\left[ \begin{array}{ccc} \mathbf{q}(\mathbf{m}_n) &{} \mathbf{0} &{} \mathbf{0}\\ \mathbf{0} &{} \mathbf{q}(\mathbf{m}_n) &{} \mathbf{0}\\ \mathbf{0} &{} \mathbf{0} &{} \mathbf{q}(\mathbf{m}_n) \end{array}\right] ^\mathrm{T} \end{aligned}$$
    (31)

1.2 Computation of \(\mathbf{J}(\mathbf{I}_X |\varvec{\theta }^*)\)

The Jacobians for the ideal parameter \({\varvec{\theta }}^*\) cannot be computed directly because \({\varvec{\theta }}^*\) is unknown. However, an effective approximation can be derived using the template image T and the current parameters \({\varvec{\theta }}\).

Let \(\mathbf{F}^{-1}\) be an inverse mapping from \(\mathbf{m}^{(\mathrm{X})}\) to \(\mathbf m\). By using \(I_\mathrm{X}(\mathbf{m}^{(\mathrm{X})})\big |_{{{\varvec{\theta }}}^*}=T(\mathbf{m})\) and \(\mathbf{m}=\mathbf{F}^{-1}(\mathbf{m}^{(\mathrm{X})}|{\varvec{\theta }})\), one derives the nth row of the Jacobian

$$\begin{aligned}&\nabla _{{\varvec{\theta }}}I_\mathrm{X}(\mathbf{m}_n^{(\mathrm{X})})\big |_{\theta ^*} =\nabla _{{\varvec{\theta }}}T\left[ \mathbf{F}^{-1}(\mathbf{m}_n^{(\mathrm{X})}|{{\varvec{\theta }}})\right] \Big |_{\theta ^*} \nonumber \\&\quad =\mathbf{J}_\mathrm{T}{} \mathbf{J}_\mathrm{F}^{-1}{} \mathbf{J}_{\varvec{{\mathrm{\Phi }}}}^*\mathbf{J}_\mathrm{C}{} \mathbf{J}_\mathrm{W} \end{aligned}$$
(32)
  1. (i)

    \(\mathbf{J}_\mathrm{T}=\nabla _\mathbf{m}T(\mathbf{m})\big |_{\mathbf{m}_n}\) is the spatial derivative of T at \(\mathbf{m}_n\).

  2. (ii)

    \(\mathbf{J}_\mathrm{F}^{-1}=\nabla _\mathbf{x}{} \mathbf{F}^{-1}(\mathbf{x}|{{\varvec{\theta }}}^*)\big |_{\mathbf{m}_n^{(\mathrm{X})}}=\left[ \nabla _\mathbf{x}{} \mathbf{F}(\mathbf{x}|{{\varvec{\theta }}}^*)\big |_{\mathbf{m}_n}\right] ^{-1}\) \( \quad \quad =\left[ \mathbf{J}_{\varvec{{\mathrm{\Phi }}}}^*\mathbf{J}_\mathrm{C}\mathbf{J}_\mathrm{W}^*\right] ^{-1}\) can be approximated by

    $$\begin{aligned} \mathbf{J}_{\varvec{{\mathrm{\Phi }}}}^*= & {} \nabla _\mathbf{h}{{\varvec{\varPhi }}}(\mathbf{h})\big |_{(\mathbf{h}_n^{(\mathrm{X})}|{{\varvec{\theta }}}^*)} \approx \mathbf{J}_{\varvec{{\mathrm{\Phi }}}} \end{aligned}$$
    (33)
    $$\begin{aligned} \mathbf{J}_\mathrm{W}^*= & {} \nabla _\mathbf{m}{} \mathbf{W}(\mathbf{m}|{{\varvec{\varTheta }}}^*)\big |_{\mathbf{m}_n} ={{\varvec{\varTheta }}}^*\mathbf{J}_\mathrm{q} \approx {{\varvec{\varTheta }}}{} \mathbf{J}_\mathrm{q} \end{aligned}$$
    (34)

    where \(\mathbf{J}_\mathrm{q}\) is a \(4\times 2\) constant matrix

    $$\begin{aligned} \mathbf{J}_\mathrm{q} =\nabla _\mathbf{m}{} \mathbf{q}(\mathbf{m})\big |_{\mathbf{m}_n} =\left[ \begin{array}{c} \nabla _\mathbf{m}S(r)\big |_{\mathbf{m}_n}\\ \left[ \mathbf{M}^{-1}\right] _{3\times 2}-{{\varvec{\lambda }}}_o\nabla _\mathbf{m}S(r)\big |_{\mathbf{m}_n} \end{array}\right] \end{aligned}$$
    (35)

    with

    $$\begin{aligned} \nabla _\mathbf{m}S(r)\big |_{\mathbf{m}_n} =\frac{3\Vert \mathbf{m}_n-\mathbf{m}_o\Vert -6R}{2R^3}(\mathbf{m}_n-\mathbf{m}_o)^\mathrm{T} \end{aligned}$$
    (36)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, B., Liu, C., Huang, K. et al. A triangular radial cubic spline deformation model for efficient 3D beating heart tracking. SIViP 11, 1329–1336 (2017). https://doi.org/10.1007/s11760-017-1090-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-017-1090-y

Keywords

Navigation