Skip to main content
Log in

Antibody–Drug Conjugates in Uro-Oncology

  • Review Article
  • Published:
Targeted Oncology Aims and scope Submit manuscript

Abstract

Currently available treatment options for patients with refractory metastatic prostate, bladder, or kidney cancers are limited with the prognosis remaining poor. Advances in the pathobiology of tumors has led to the discovery of cancer antigens that may be used as the target for cancer treatment. Antibody–drug conjugates (ADCs) are a relatively new concept in cancer treatment that broaden therapeutic landscape. ADCs are examples of a ‘drug delivery into the tumor’ system composed of an antigen-directed antibody linked to a cytotoxic drug that may release cytotoxic components after binding to the antigen located on the surface of tumor cells. The clinical properties of drugs are influenced by every component of ADCs. Regarding uro-oncology, enfortumab vedotin (EV) and sacituzumab govitecan (SG) are currently registered for patients with locally advanced or metastatic urothelial cancer following previous treatment with an immune checkpoint inhibitor (iCPI; programmed death receptor-1 [PD-1] or programmed death-ligand 1 [PD-L1]) inhibitor) and platinum-containing chemotherapy. The EV-301 trial showed that EV significantly prolonged the overall survival compared with classic chemotherapy. The TROPHY-U-01 trial conducted to evaluate SG demonstrated promising results as regards the objective response rate and duration of response. The safety and efficacy of ADCs in monotherapy and polytherapy (mainly with iCPIs) for different cancer stages and tumor types are assessed in numerous ongoing clinical trials. The aim of this review is to present new molecular biomarkers, specific mechanisms of action, and ongoing clinical trials of ADCs in genitourinary cancers. In the expert discussion, we assess the place of ADCs in uro-oncology and discuss their clinical value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49.

    Article  PubMed  Google Scholar 

  2. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.

    Article  CAS  PubMed  Google Scholar 

  3. Nicholas MD, Andrew TL, Stuart H, Alexandra D, Allan P, Arie B, et al. Immunotherapy for the treatment of urothelial carcinoma. J Urol. 2017;197:14–22.

    Article  CAS  Google Scholar 

  4. David DC. Urothelial carcinoma of the bladder and the rise of immunotherapy. J Natl Compr Canc Netw. 2017;15:1277–84.

    Article  CAS  Google Scholar 

  5. Inamoto T, Azuma H. Immunotherapy of genitourinary malignancies. J Oncol. 2012;2012:397267.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Jang A, Adler DM, Rauterkus GP, Bilen MA, Barata PC. Immunotherapies in genitourinary oncology: where are we now? Where are we going? Cancers (Basel). 2021;13:5065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Xu W, Atkins MB, McDermott DF. Checkpoint inhibitor immunotherapy in kidney cancer. Nat Rev Urol. 2020;17(3):137–50.

    Article  CAS  PubMed  Google Scholar 

  8. Koneru R, Hotte SJ. Role of cytokine therapy for renal cell carcinoma in the era of targeted agents. Curr Oncol. 2009;16:S40.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Jhunjhunwala S, Hammer C, Delamarre L. Antigen presentation in cancer: insights into tumour immunogenicity and immune evasion. Nat Rev Cancer. 2021;21:298–312.

    Article  CAS  PubMed  Google Scholar 

  10. Silverstein AM. Paul Ehrlich’s passion: the origins of his receptor immunology. Cell Immunol. 1999;194:213–21.

    Article  CAS  PubMed  Google Scholar 

  11. Chau CH, Steeg PS, Figg WD. Antibody–drug conjugates for cancer. Lancet. 2019;394(10200):793–804.

    Article  CAS  PubMed  Google Scholar 

  12. Jeong WJ, Bu J, Kubiatowicz LJ, Chen SS, Kim YS, Hong S. Peptide–nanoparticle conjugates: a next generation of diagnostic and therapeutic platforms? Nano Converg. 2018. https://doi.org/10.1186/s40580-018-0170-1.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Leung D, Wurst J, Liu T, Martinez R, Datta-Mannan A, Feng Y. Antibody conjugates-recent advances and future innovations. Antibodies. 2020;9:2.

    Article  CAS  PubMed Central  Google Scholar 

  14. FDA approved antibody–drug conjugates up to 2021. Biopharma PEG [cited 2 Oct 2021]. Available at: https://www.biochempeg.com/article/74.html.

  15. Chang E, Weinstock C, Zhang L, Charlab R, Dorff SE, Gong Y, et al. FDA approval summary: enfortumab vedotin for locally advanced or metastatic urothelial carcinoma. Clin Cancer Res. 2021;27:922–7.

    Article  CAS  PubMed  Google Scholar 

  16. Tagawa ST, Balar AV, Petrylak DP, Kalebasty AR, Loriot Y, et al. TROPHY-U-01: a phase II open-label study of sacituzumab govitecan in patients with metastatic urothelial carcinoma progressing after platinum-based chemotherapy and checkpoint inhibitors. J Clin Oncol. 2021;39:2474–85.

    Article  CAS  PubMed  Google Scholar 

  17. FDA grants accelerated approval to sacituzumab govitecan for advanced urothelial cancer. FDA [cited 5 Mar 2022]. Available at: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-sacituzumab-govitecan-advanced-urothelial-cancer.

  18. Tang Y, Tang F, Yang Y, Zhao L, Zhou H, Dong J, et al. Real-time analysis on drug-antibody ratio of antibody–drug conjugates for synthesis, process optimization, and quality control. Sci Reports. 2017;7:1–10.

    Google Scholar 

  19. Khongorzul P, Ling CJ, Khan FU, Ihsan AU, Zhang J. Antibody–drug conjugates: a comprehensive review. Mol Cancer Res. 2020;18(1):3–19.

    Article  CAS  PubMed  Google Scholar 

  20. Kang TH, Jung ST. Boosting therapeutic potency of antibodies by taming Fc domain functions. Exp Mol Med. 2019;51:1–9.

    PubMed  Google Scholar 

  21. Petrylak DP, Kantoff P, Vogelzang NJ, Mega A, Fleming MT, Stephenson JJ, et al. Phase 1 study of PSMA ADC, an antibody–drug conjugate targeting prostate-specific membrane antigen, in chemotherapy-refractory prostate cancer. Prostate. 2019;79:604–13.

    Article  CAS  PubMed  Google Scholar 

  22. Costoplus JA, Veale KH, Qiu Q, Ponte JF, Lanieri L, Setiady Y, et al. Peptide-cleavable self-immolative maytansinoid antibody–drug conjugates designed to provide improved bystander killing. ACS Med Chem Lett. 2019;10:1393–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Goldenberg DM, Stein R, Sharkey RM. The emergence of trophoblast cell-surface antigen 2 (TROP-2) as a novel cancer target. Oncotarget. 2018;9(48):28989–9006.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Jang S, Powderly JD, Spira AI, Bakkacha O, Loo D, Bohac GC, et al. Phase 1 dose escalation study of MGC018, an anti-B7-H3 antibody-drug conjugate (ADC), in patients with advanced solid tumors. J Clin Oncol. 2021;39(15 Suppl):2631.

    Article  Google Scholar 

  25. Peters C, Brown S. Antibody–drug conjugates as novel anti-cancer chemotherapeutics. Biosci Rep. 2015;35(4):e00225.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Su Z, Xiao D, Xie F, Liu L, Wang Y, Fan S, et al. Antibody–drug conjugates: recent advances in linker chemistry. Acta Pharm Sin B. 2021;11(12):3889–907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ritchie M, Tchistiakova L, Scott N. Implications of receptor-mediated endocytosis and intracellular trafficking dynamics in the development of antibody drug conjugates. MAbs. 2013;5:13.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Jiang T, Shi T, Zhang H, Hu J, Song Y, Wei J, et al. Tumor neoantigens: from basic research to clinical applications. J Hematol Oncol. 2019;12(1):93.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Staudacher AH, Brown MP. Antibody drug conjugates and bystander killing: is antigen-dependent internalisation required? Br J Cancer. 2017;117(12):1736–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kovtun YV, Audette CA, Ye Y, Xie H, Ruberti MF, Phinney SJ, et al. Antibody–drug conjugates designed to eradicate tumors with homogeneous and heterogeneous expression of the target antigen. Cancer Res. 2006;66:3214–21.

    Article  CAS  PubMed  Google Scholar 

  31. Khera E, Cilliers C, Smith M, Ganno M, Lai K, Ta K, et al. Quantifying ADC bystander payload penetration with cellular resolution using pharmacodynamic mapping. Neoplasia. 2021;23:210–21.

    Article  CAS  PubMed  Google Scholar 

  32. Chalouni C, Doll S. Fate of antibody–drug conjugates in cancer cells. J Exp Clin Cancer Res. 2018;37:1–12.

    Article  CAS  Google Scholar 

  33. Sigorski D, Iżycka-Świeszewska E, Bodnar L. Poly(ADP-ribose) polymerase inhibitors in prostate cancer: molecular mechanisms, and preclinical and clinical data. Target Oncol. 2020;15(6):709–22.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Belderbos BPS, de Wit R, Lolkema MPJ, Mathijssen RHJ, van Soest RJ. Novel treatment options in the management of metastatic castration-naïve prostate cancer; which treatment modality to choose? Ann Oncol. 2019;30:1591–600.

    Article  CAS  PubMed  Google Scholar 

  35. Wilk M, Waśko-Grabowska A, Szmit S. Cardiovascular complications of prostate cancer treatment. Front Pharmacol. 2020;11:555475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tucker MD, Zhu J, Marin D, Gupta RT, Gupta S, Berry WR, et al. Pembrolizumab in men with heavily treated metastatic castrate-resistant prostate cancer. Cancer Med. 2019;8:4644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Powers E, Karachaliou GS, Kao C, Harrison MR, Hoimes CJ, George DJ, et al. Novel therapies are changing treatment paradigms in metastatic prostate cancer. J Hematol Oncol. 2020;13(1):144.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Ristau BT, O’Keefe DS, Bacich DJ. The prostate-specific membrane antigen: lessons and current clinical implications from 20 years of research. Urol Oncol. 2014;32(3):272–9.

    Article  PubMed  Google Scholar 

  39. Gomes IM, Santos CR, Socorro S, Maia CJ. Six transmembrane epithelial antigen of the prostate 1 is down-regulated by sex hormones in prostate cells. Prostate. 2013;73:605–13.

    Article  CAS  PubMed  Google Scholar 

  40. McHugh D, Eisenberger M, Heath EI, Bruce J, Danila DC, Rathkopf DE, et al. A phase I study of the antibody drug conjugate ASG-5ME, an SLC44A4-targeting antibody carrying auristatin E, in metastatic castration-resistant prostate cancer. Invest New Drugs. 2019;37:1052–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Trerotola M, Ganguly KK, Fazli L, Fedele C, Lu H, Dutta A, et al. Trop-2 is up-regulated in invasive prostate cancer and displaces FAK from focal contacts. Oncotarget. 2015;6:14318–28.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Yang S, Wei W, Zhao Q. B7–H3, a checkpoint molecule, as a target for cancer immunotherapy. Int J Biol Sci. 2020;16:1767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chang SS. Overview of prostate-specific membrane antigen. Rev Urol. 2004;6(Suppl 10):S13–8.

    PubMed  PubMed Central  Google Scholar 

  44. Mhawech-Fauceglia P, Zhang S, Terracciano L, Sauter G, Chadhuri A, Herrmann FR, et al. Prostate-specific membrane antigen (PSMA) protein expression in normal and neoplastic tissues and its sensitivity and specificity in prostate adenocarcinoma: an immunohistochemical study using mutiple tumour tissue microarray technique. Histopathology. 2007;50:472–83.

    Article  CAS  PubMed  Google Scholar 

  45. Van de Wiele C, Sathekge M, de Spiegeleer B, De Jonghe PJ, Debruyne PR, Borms M, et al. PSMA expression on neovasculature of solid tumors. Histol. 2020;35:919–27.

    Google Scholar 

  46. Haffner MC, Laimer J, Chaux A, Schäfer G, Obrist P, Brunner A, et al. High expression of prostate-specific membrane antigen in the tumor-associated neo-vasculature is associated with worse prognosis in squamous cell carcinoma of the oral cavity. Mod Pathol. 2012;25:1079–85.

    Article  CAS  PubMed  Google Scholar 

  47. Caromile LA, Dortche K, Rahman MM, Grant CL, Stoddard C, Ferrer FA, et al. PSMA redirects cell survival signaling from the MAPK to the PI3K–AKT pathways to promote the progression of prostate cancer. Sci Signal. 2017;10(470):e3326.

    Article  CAS  Google Scholar 

  48. Kasperzyk JL, Finn SP, Flavin R, Fiorentino M, Lis R, Hendrickson WK, et al. Prostate-specific membrane antigen protein expression in tumor tissue and risk of lethal prostate cancer. Cancer Epidemiol Biomark Prev. 2013;22:2354–63.

    Article  CAS  Google Scholar 

  49. Hupe MC, Philippi C, Roth D, Kümpers C, Ribbat-Idel J, Becker F, et al. Expression of prostate-specific membrane antigen (PSMA) on biopsies is an independent risk stratifier of prostate cancer patients at time of initial diagnosis. Front Oncol. 2018;8:623.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Nagaya N, Nagata M, Lu Y, Kanayama M, Hou Q, Hotta Z, et al. Prostate-specific membrane antigen in circulating tumor cells is a new poor prognostic marker for castration-resistant prostate cancer. PLoS ONE. 2020;15(1):e0226219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kurash MM, Gill R, Khairulin M, Harbosh H, Keidar Z. 68Ga-labeled PSMA-11 (68Ga-isoPROtrace-11) synthesized with ready to use kit: normal biodistribution and uptake characteristics of tumour lesions. Sci Rep. 2020;10:1–8.

    Article  CAS  Google Scholar 

  52. Sartor O, de Bono J, Chi KN, Fizazi K, Herrmann K, Rahbar K, et al. Lutetium-177–PSMA-617 for metastatic castration-resistant prostate cancer. N Engl J Med. 2021;385:1091–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Patri AK, Myc A, Beals J, Thomas TP, Bander NH, Baker JR. Synthesis and in vitro testing of J591 antibody-dendrimer conjugates for targeted prostate cancer therapy. Bioconjug Chem. 2004;15(6):1174–81.

    Article  CAS  PubMed  Google Scholar 

  54. Ma D, Hopf CE, Malewicz AD, Donovan GP, Senter PD, Goeckeler WF, et al. Potent antitumor activity of an auristatin-conjugated, fully human monoclonal antibody to prostate-specific membrane antigen. Clin Cancer Res. 2006;12(8):2591–6.

    Article  CAS  PubMed  Google Scholar 

  55. Galsky M, Eisenberger M, Moore-Cooper S, Kelly W, Slovin SF, DeLaCruz D, et al. Phase I trial of the prostate-specific membrane antigen-directed immunoconjugate MLN2704 in patients with progressive metastatic castration-resistant prostate cancer. J Clin Oncol. 2008;26:2147–54.

    Article  CAS  PubMed  Google Scholar 

  56. Milowsky MI, Galsky MD, Morris MJ, Crona DJ, George DJ, Dreicer R, et al. Phase 1/2 multiple ascending dose trial of the prostate-specific membrane antigen-targeted antibody drug conjugate MLN2704 in metastatic castration-resistant prostate cancer. Urol Oncol Semin Orig Investig. 2016;34:530.e15-530.e21.

    CAS  Google Scholar 

  57. Petrylak DP, Vogelzang NJ, Chatta K, Fleming MT, Smith DC, Appleman LJ, et al. PSMA ADC monotherapy in patients with progressive metastatic castration-resistant prostate cancer following abiraterone and/or enzalutamide: efficacy and safety in open-label single-arm phase 2 study. Prostate. 2020;80:99–108.

    Article  CAS  PubMed  Google Scholar 

  58. De Bono JS, Fleming MT, Wang JSZ, Cathomas R, Williams M, Bothos JG, et al. MEDI3726, a prostate-specific membrane antigen (PSMA)-targeted antibody–drug conjugate (ADC) in mCRPC after failure of abiraterone or enzalutamide. J Clin Oncol. 2020;38:99.

    Article  Google Scholar 

  59. Cho S, Zammarchi F, Williams DG, Havenith CEG, Monks NR, Tyrer P, et al. Antitumor activity of MEDI3726 (ADCT-401), a pyrrolobenzodiazepine antibody–drug conjugate targeting PSMA, in preclinical models of prostate cancer. Mol Cancer Ther. 2018;17:2176–86.

    Article  CAS  PubMed  Google Scholar 

  60. Huang CT, Guo X, Bařinka C, Lupold SE, Pomper MG, Gabrielson K, et al. Development of 5D3-DM1: a novel anti-prostate-specific membrane antigen antibody–drug conjugate for PSMA-positive prostate cancer therapy. Mol Pharm. 2020;17:3392–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hubert RS, Vivanco I, Chen E, Rastegar S, Leong K, Mitchell SC, et al. STEAP: a prostate-specific cell-surface antigen highly expressed in human prostate tumors. Proc Natl Acad Sci USA. 1999;96(25):14523–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Yamamoto T, Tamura Y, Kobayashi J, Kamiguchi K, Hirohashi Y, Miyazaki A, et al. Six-transmembrane epithelial antigen of the prostate-1 plays a role for in vivo tumor growth via intercellular communication. Exp Cell Res. 2013;319:2617–26.

    Article  CAS  PubMed  Google Scholar 

  63. Machlenkin A, Paz A, Haim EB, Goldberger O, Finkel E, Tirosh B, et al. Human CTL epitopes prostatic acid phosphatase-3 and six-transmembrane epithelial antigen of prostate-3 as candidates for prostate cancer immunotherapy. Cancer Res. 2005;65:6435–42.

    Article  CAS  PubMed  Google Scholar 

  64. Challita-Eid PM, Satpayev D, Yang P, An Z, Morrison K, Shostak Y, et al. Enfortumab vedotin antibody–drug conjugate targeting nectin-4 is a highly potent therapeutic agent in multiple preclinical cancer models. Cancer Res. 2016;76:3003–13.

    Article  CAS  PubMed  Google Scholar 

  65. Danila DC, Szmulewitz RZ, Vaishampayan U, Higano CS, Baron AD, Gilbert HN, et al. Phase I study of DSTP3086S, an antibody–drug conjugate targeting six-transmembrane epithelial antigen of prostate 1, in metastatic castration-resistant prostate cancer. J Clin Oncol. 2019;37:3518–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hedtke V, Bakovic M. Choline transport for phospholipid synthesis: an emerging role of choline transporter-like protein 1. Exp Biol Med. 2019;244:655.

    Article  CAS  Google Scholar 

  67. Mattie M, Raitano A, Morrison K, Morrison K, An Z, Capo L, et al. The discovery and preclinical development of ASG-5ME, an antibody–drug conjugate targeting SLC44A4-positive epithelial tumors including pancreatic and prostate cancer. Mol Cancer Ther. 2016;15:2679–87.

    Article  CAS  PubMed  Google Scholar 

  68. Ku KP, Lang JM, Sperger J, Dehm S, Kohli M, Wang L, et al. Trop-2 expression on treatment resistant cancer cells in castrate-resistant prostate cancer (CRPC) as a predictive biomarker for targeted therapy. J Clin Oncol. 2017;35:5045.

    Article  Google Scholar 

  69. İlker A, Yelda D. Could trop-2 overexpression indicate tumor aggressiveness among prostatic adenocarcinomas? Ann Diagn Pathol. 2021;50:151680.

    Article  Google Scholar 

  70. Lang JM, Kyriakopoulos C, Slovin SF, Eickhoff JC, Dehm S, Tagawa ST. Single-arm, phase II study to evaluate the safety and efficacy of sacituzumab govitecan in patients with metastatic castration-resistant prostate cancer who have progressed on second generation AR-directed therapy. J Clin Oncol. 2020;38:TPS251.

    Article  Google Scholar 

  71. Zou W, Chen L. Inhibitory B7-family molecules in the tumour microenvironment. Nat Rev Immunol. 2008;8:467–77.

    Article  CAS  PubMed  Google Scholar 

  72. Sejda A, Sigorski D, Gulczyński J, Wesołowski W, Kitlińska J, Iżycka-Świeszewska E. Complexity of neural component of tumor microenvironment in prostate cancer. Pathobiology. 2020;87(2):87–99.

    Article  PubMed  Google Scholar 

  73. Martínez-Bosch N, Navarro P. Galectins in the tumor microenvironment: focus on galectin-1. Adv Exp Med Biol. 2020;1259:17–38.

    Article  PubMed  CAS  Google Scholar 

  74. Benzon B, Zhao S, Haffner M, Takhar M, Erho N, Yousefi K, et al. Correlation of B7–H3 with androgen receptor, immune pathways and poor outcome in prostate cancer: an expression-based analysis. Prostate Cancer Prostatic Dis. 2017;20:28–35.

    Article  CAS  PubMed  Google Scholar 

  75. Bonk S, Tasdelen P, Kluth M, Hube-Magg C, Makrypidi-Fraune G, Möller K, et al. High B7–H3 expression is linked to increased risk of prostate cancer progression. Pathol Int. 2020;70:733–42.

    Article  CAS  PubMed  Google Scholar 

  76. Guo C, Figueiredo I, Gurel B, Crespo M, Rekowski J, Carreira S, et al. Abstract LB035: B7–H3 as a therapeutic target in prostate cancer. Cancer Res. 2021;81:LB035.

    Article  Google Scholar 

  77. Scribner JA, Brown JG, Son T, Chiechi M, Li P, Sharma S, et al. Preclinical development of MGC018, a duocarmycin-based antibody–drug conjugate targeting B7–H3 for solid cancer. Mol Cancer Ther. 2020;19:2235–44.

    Article  CAS  PubMed  Google Scholar 

  78. Shenderov E, Mallesara GHG, Wysocki PJ, Xu W, Ramlau R, Weickhardt AJ, et al. 620P MGC018, an anti-B7–H3 antibody–drug conjugate (ADC), in patients with advanced solid tumors: preliminary results of phase I cohort expansion. Ann Oncol. 2021;32:S657–9.

    Article  Google Scholar 

  79. Powles T, Park SH, Voog E, Caserta C, Valderrama BP, Gurney H, et al. Avelumab maintenance therapy for advanced or metastatic urothelial carcinoma. N Engl J Med. 2020;383:1218–30.

    Article  CAS  PubMed  Google Scholar 

  80. Bladder Cancer Treatment Recommendations [cited 3 Oct 2021]. Available at: https://www.esmo.org/guidelines/genitourinary-cancers/bladder-cancer/eupdate-bladder-cancer-treatment-recommendations3.

  81. Chu C, Sjöström M, Egusa EA, Gibb E, Badura ML, Koshkin VS, et al. Heterogeneity in Nectin-4 expression across molecular subtypes of urothelial cancer mediates sensitivity to enfortumab vedotin. J Clin Oncol. 2021;39(6 Suppl):463.

    Article  Google Scholar 

  82. Oh DY, Bang YJ. HER2-targeted therapies—a role beyond breast cancer. Nat Rev Clin Oncol. 2020;17(1):33–48.

    Article  CAS  PubMed  Google Scholar 

  83. Bryan RT, Shimwell NJ, Wei W, Devall AJ, Pirrie SJ, James ND, et al. Urinary EpCAM in urothelial bladder cancer patients: characterisation and evaluation of biomarker potential. Br J Cancer. 2014;110:679–85.

    Article  CAS  PubMed  Google Scholar 

  84. Powles T, Rosenberg JE, Sonpavde GP, Loriot Y, Durán I, Lee J-L, et al. Enfortumab vedotin in previously treated advanced urothelial carcinoma. N Engl J Med. 2021;384:1125–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Rosenberg JE, Sridhar SS, Zhang J, Smith DC, Ruether JD, Flaig TW, et al. Mature results from EV-101: a phase I study of enfortumab vedotin in patients with metastatic urothelial cancer (mUC). J Clin Oncol. 2019;37:377.

    Article  Google Scholar 

  86. Yu EY, Petrylak DP, O’Donnell PH, Lee JL, van der Heijden MS, Loriot Y, et al. Enfortumab vedotin after PD-1 or PD-L1 inhibitors in cisplatin-ineligible patients with advanced urothelial carcinoma (EV-201): a multicentre, single-arm, phase 2 trial. Lancet Oncol. 2021;22:872–82.

    Article  CAS  PubMed  Google Scholar 

  87. Rosenberg JE, Powles T, Sonpavde GP, Loriot Y, Duran I, Lee JL, et al. 698P analysis of hard-to-treat subgroups from EV-301: a phase III trial of enfortumab vedotin (EV) vs chemotherapy for previously treated advanced urothelial carcinoma. Ann Oncol. 2021;32:S710–1.

    Article  Google Scholar 

  88. Galsky MD, Necchi A, Shore ND, Plimack ER, Jia C, Sbar E, et al. KEYNOTE-905/EV-303: Perioperative pembrolizumab or pembrolizumab plus enfortumab vedotin (EV) and cystectomy compared to cystectomy alone in cisplatin-ineligible patients with muscle-invasive bladder cancer (MIBC). J Clin Oncol. 2021;39(6 Suppl):TPS507.

    Article  Google Scholar 

  89. Abrahamsson J, Aaltonen K, Engilbertsson H, Liedberg F, Patschan O, Ryden R, et al. Circulating tumor cells in patients with advanced urothelial carcinoma of the bladder: association with tumor stage, lymph node metastases, FDG-PET findings, and survival. Urol Oncol. 2017;35:6069.e9-60616.e16.

    Article  CAS  Google Scholar 

  90. Spizzo G, Fong D, Wurm M, Ensinger C, Obrist P, Hofer C, et al. EpCAM expression in primary tumour tissues and metastases: an immunohistochemical analysis. J Clin Pathol. 2011;64:415–20.

    Article  PubMed  Google Scholar 

  91. Brunner A, Prelog M, Verdorfer I, Tzankov A, Mikuz G, Ensinger C. EpCAM is predominantly expressed in high grade and advanced stage urothelial carcinoma of the bladder. J Clin Pathol. 2008;61:307–10.

    Article  CAS  PubMed  Google Scholar 

  92. van der Fels CAM, Rosati S, de Jong IJ. EpCAM expression in lymph node metastases of urothelial cell carcinoma of the bladder: a pilot study. Int J Mol Sci. 2017;18(8):1802.

    Article  PubMed Central  CAS  Google Scholar 

  93. Kowalski M, Guindon J, Brazas L, Moore C, Entwistle J, Cizeau J, et al. A phase II study of oportuzumab monatox: an immunotoxin therapy for patients with noninvasive urothelial carcinoma in situ previously treated with bacillus Calmette–Guérin. J Urol. 2012;188:1712–8.

    Article  CAS  PubMed  Google Scholar 

  94. Zeng P, Chen MB, Zhou LN, Tang M, Liu CY, Lu PH. Impact of TROP2 expression on prognosis in solid tumors: a systematic review and meta-analysis. Sci Rep. 2016;6:33658.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Zhang L, Yang G, Jiang H, Liu M, Chen H, Huang Y, et al. TROP2 is associated with the recurrence of patients with non-muscle invasive bladder cancer. Int J Clin Exp Med. 2017;10(1):1643–50.

    CAS  Google Scholar 

  96. Starodub AN, Ocean AJ, Shah MA, Guarino MJ, Picozzi VJ, Vahdat LT, et al. First-in-human trial of a novel anti-trop-2 antibody-SN-38 conjugate, sacituzumab govitecan, for the treatment of diverse metastatic solid tumors. Clin Cancer Res. 2015;21:3870–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Grivas P, Tagawa ST, Bellmunt J, Santis MD, Duran I, Goebell P-J, et al. TROPiCS-04: study of sacituzumab govitecan in metastatic or locally advanced unresectable urothelial cancer that has progressed after platinum and checkpoint inhibitor therapy. J Clin Oncol. 2021;39(6 Suppl):TPS498.

    Article  Google Scholar 

  98. Necchi A, Raggi D, Bandini M, Gallina A, Capitanio U, Gandaglia G, et al. SURE: an open label, sequential-arm, phase II study of neoadjuvant sacituzumab govitecan (SG), and SG plus pembrolizumab (pembro) before radical cystectomy, for patients with muscle-invasive bladder cancer (MIBC) who cannot receive or refuse cisplatin-based chemotherapy. J Clin Oncol. 2021;39(6 Suppl):TPS506.

    Article  Google Scholar 

  99. Versteeg HH, Spek CA, Peppelenbosch MP, Richel DJ. Tissue factor and cancer metastasis: The role of intracellular and extracellular signaling pathways. Mol Med. 2004;10(1):6–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Van Den Berg YW, Osanto S, Reitsma PH, Versteeg HH. The relationship between tissue factor and cancer progression: insights from bench and bedside. Blood. 2012;119(4):924–32.

    Article  PubMed  CAS  Google Scholar 

  101. Lwaleed BA, Bass PS, Francis JL. Urinary tissue factor: a potential marker of disease. J Pathol. 1999;188:3–8.

    Article  CAS  PubMed  Google Scholar 

  102. Patry G, Hovington H, Larue H, Harel F, Fradet Y, Lacombe L. Tissue factor expression correlates with disease-specific survival in patients with node-negative muscle-invasive bladder cancer. Int J Cancer. 2008;122:1592–7.

    Article  CAS  PubMed  Google Scholar 

  103. Mueller BM, Ruf W. Requirement for binding of catalytically active factor VIIa in tissue factor-dependent experimental metastasis. J Clin Invest. 1998;101:1372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. de Bono JS, Concin N, Hong DS, Thistlethwaite FC, Machiels JP, Arkenau HT, et al. Tisotumab vedotin in patients with advanced or metastatic solid tumours (InnovaTV 201): a first-in-human, multicentre, phase 1–2 trial. Lancet Oncol. 2019;20:383–93.

    Article  PubMed  Google Scholar 

  105. Sanford T, Porten S, Meng MV. Molecular analysis of upper tract and bladder urothelial carcinoma: results from a microarray comparison. PLoS ONE. 2015;10:e0137141.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Morrison K, Challita-Eid PM, Raitano A, An Z, Yang P, Abad JD, et al. Development of ASG-15ME, a novel antibody–drug conjugate targeting SLITRK6, a new urothelial cancer biomarker. Mol Cancer Ther. 2016;15:1301–10.

    Article  CAS  PubMed  Google Scholar 

  107. Petrylak DP, Heath EI, Sonpavde G, George S, Morgans AK, Eigl BJ, et al. Anti-tumor activity, safety and pharmacokinetics (PK) of AGS15E (ASG-15ME) in a phase I dose escalation trial in patients (Pts) with metastatic urothelial cancer (mUC). J Clin Oncol. 2016;34(15 Suppl):4532.

    Article  Google Scholar 

  108. Kiss B, Wyatt AW, Douglas J, Skuginna V, Mo F, Anderson S, et al. Her2 alterations in muscle-invasive bladder cancer: patient selection beyond protein expression for targeted therapy. Sci Rep. 2017;7:42713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Tan T, Rouanne M, Tan K, Huang R, Thiery J. Molecular subtypes of urothelial bladder cancer: results from a meta-cohort analysis of 2411 tumors. Eur Urol. 2019;75:423–32.

    Article  CAS  PubMed  Google Scholar 

  110. Zhao J, Chen J, Zhang M, Tang X, Sun G, Zhu S, et al. The clinical significance of perineural invasion in patients with de novo metastatic prostate cancer. Andrology. 2019;7:184–92.

    Article  CAS  PubMed  Google Scholar 

  111. Hayashi T, Seiler R, Oo HZ, Jäger W, Moskalev I, Awrey S, et al. Targeting HER2 with T-DM1, an antibody cytotoxic drug conjugate, is effective in HER2 over expressing bladder cancer. J Urol. 2015;194:1120–31.

    Article  CAS  PubMed  Google Scholar 

  112. Sheng X, Zhou A-P, Yao X, Shi Y, Luo H, Shi B, et al. A phase II study of RC48-ADC in HER2-positive patients with locally advanced or metastatic urothelial carcinoma. J Clin Oncol. 2019;37(15 Suppl):4509.

    Article  Google Scholar 

  113. Li BT, Makker V, Buonocore DJ, Offin MD, Olah ZT, Panora E, et al. A multi-histology basket trial of ado-trastuzumab emtansine in patients with HER2 amplified cancers. J Clin Oncol. 2018;36:2502.

    Article  Google Scholar 

  114. Ferraro E, Drago JZ, Modi S. Implementing antibody–drug conjugates (ADCs) in HER2-positive breast cancer: state of the art and future directions. Breast Cancer Res. 2021;23:1–11.

    Article  CAS  Google Scholar 

  115. Gong J, Shen L, Wang W, Fang J. Safety, pharmacokinetics and efficacy of RC48-ADC in a phase I study in patients with HER2-overexpression advanced solid cancer. J Clin Oncol. 2018;36:e16059.

    Article  Google Scholar 

  116. Sheng X, Yan X, Wang L, Shi Y, Yao X, Luo H, et al. Open-label, multicenter, phase II study of RC48-ADC, a HER2-targeting antibody–drug conjugate, in patients with locally advanced or metastatic urothelial carcinoma. Clin Cancer Res. 2021;27(1):43–51.

    Article  CAS  PubMed  Google Scholar 

  117. Escudier B, Porta C, Schmidinger M, Rioux-Leclercq N, Bex A, Khoo V, et al. Renal cell carcinoma: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2019;30:706–20.

    Article  CAS  PubMed  Google Scholar 

  118. Diegmann J, Junker K, Gerstmayer B, Bosio A, Hindermann W, Rosenhahn J, et al. Identification of CD70 as a diagnostic biomarker for clear cell renal cell carcinoma by gene expression profiling, real-time RT-PCR and immunohistochemistry. Eur J Cancer. 2005;41:1794–801.

    Article  CAS  PubMed  Google Scholar 

  119. Nizar T, Andres F-T, Radhakrishnan R, Pal SK, Ansell SM, Infante JR, et al. Phase I dose-escalation study of SGN-75 in patients with CD70-positive relapsed/refractory non-Hodgkin lymphoma or metastatic renal cell carcinoma. Invest New Drugs. 2014;32:1246–57.

    Article  CAS  Google Scholar 

  120. Starzer AM, Berghoff AS. New emerging targets in cancer immunotherapy: CD27 (TNFRSF7). ESMO Open. 2019;4:629.

    Article  Google Scholar 

  121. Pal SK, Forero-Torres A, Thompson JA, Morris JC, Chhabra S, Hoimes CJ, et al. A phase 1 trial of SGN-CD70A in patients with CD70-positive, metastatic renal cell carcinoma. Cancer. 2019;125:1124–32.

    Article  CAS  PubMed  Google Scholar 

  122. Doñate F, Raitano A, Morrison K, An Z, Capo L, Aviña H, et al. AGS16F is a novel antibody drug conjugate directed against ENPP3 for the treatment of renal cell carcinoma. Clin Cancer Res. 2016;22:1989–99.

    Article  PubMed  CAS  Google Scholar 

  123. Thompson JA, Motzer R, Molina AM, Choueiri TK, Heath EI, Kollmannsberger CK, et al. Phase I studies of anti-ENPP3 antibody drug conjugates (ADCs) in advanced refractory renal cell carcinomas (RRCC). J Clin Oncol. 2015;33(15 Suppl):2503.

    Article  Google Scholar 

  124. Kollmannsberger CK, Choueiri TK, Heng D, George S, Jie F, Croitoru R, et al. A randomized phase II study of AGS-16C3F versus axitinib in previously treated patients with metastatic renal cell carcinoma. Oncologist. 2021;26:182–361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Song J, Yu J, Prayogo GW, Cao W, Wu Y, Jia Z, et al. Understanding kidney injury molecule 1: a novel immune factor in kidney pathophysiology. Am J Transl Res. 2019;11:1219.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Scelo G, Muller DC, Riboli E, Johansson M, Cross AJ, Vineis P, et al. KIM-1 as a blood-based marker for early detection of kidney cancer: a prospective nested case–control study. Clin Cancer Res. 2018;24:5594–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Lin F, Zhang PL, Yang XJ, Shi J, Blasick T, Han WK, et al. Human kidney injury molecule-1 (hKIM-1): a useful immunohistochemical marker for diagnosing renal cell carcinoma and ovarian clear cell carcinoma. Am J Surg Pathol. 2007;31:371–81.

    Article  PubMed  Google Scholar 

  128. Bonventre JV. Kidney injury molecule-1 (KIM-1): a urinary biomarker and much more. Nephrol Dial Transplant. 2009;24:3265–8.

    Article  CAS  PubMed  Google Scholar 

  129. McGregor B, Gordon M, Flippot R, Agarwal N, George S, Quinn D, et al. Safety and efficacy of CDX-014, an antibody–drug conjugate directed against T cell immunoglobulin mucin-1 in advanced renal cell carcinoma. Invest New Drugs. 2020;38:1807–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Hoppenz P, Els-Heindl S, Beck-Sickinger AG. Peptide–drug conjugates and their targets in advanced cancer therapies. Front Chem. 2020;8:571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Hafeez U, Parakh S, Gan HK, Scott AM. Antibody–drug conjugates for cancer therapy. Molecules. 2020;25(20):4764.

    Article  CAS  PubMed Central  Google Scholar 

  132. Sheehan B, Guo C, Neeb A, Paschalis A, Sandhu S, de Bono JS. Prostate-specific membrane antigen biology in lethal prostate cancer and its therapeutic implications. Eur Urol Focus. 2021. https://doi.org/10.1016/j.euf.2021.06.006 (Epub 21 Jun 2021).

    Article  PubMed  Google Scholar 

  133. Kamath AV, Iyer S. Challenges and advances in the assessment of the disposition of antibody–drug conjugates. Biopharm Drug Dispos. 2016;37:66.

    Article  CAS  PubMed  Google Scholar 

  134. Rosenberg JE, O’Donnell PH, Balar AV, McGregor BA, Heath EI, Yu EY, et al. Pivotal trial of enfortumab vedotin in urothelial carcinoma after platinum and anti-programmed death 1/programmed death ligand 1 therapy. J Clin Oncol. 2019;37(29):2592–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Koshkin VS, Sun Y, Freeman D, Osterman CK, Su C, Natesan D, et al. Efficacy of enfortumab vedotin in advanced urothelial cancer: retrospective analysis of the Urothelial Cancer Network to Investigate Therapeutic Experiences (UNITE) study. J Clin Oncol. 2021;39:443.

    Article  Google Scholar 

  136. Flaig TW, Spiess PE, Chair V, Abern M, Agarwal N, Bangs R, et al. NCCN guidelines version 1.2022 bladder cancer. 2022 [cited 27 Feb 2022]. Available at: https://www.nccn.org/home/member.

  137. Evans-Axelsson S, Timmermand OV, Bjartell A, Strand SE, Elgqvist J. Radioimmunotherapy for prostate cancer—current status and future possibilities. Semin Nucl Med. 2016;46(2):165–79.

    Article  PubMed  Google Scholar 

  138. Matsuoka K, Sato M, Sato K. Hurdles for the wide implementation of photoimmunotherapy. Immunotherapy. 2021;13(17):1427–38.

    Article  CAS  PubMed  Google Scholar 

  139. Mączyńska J, Da Pieve C, Burley TA, Raes F, Shah A, Saczko J, et al. Immunomodulatory activity of IR700-labelled affibody targeting HER2. Cell Death Dis. 2020;11(10):886.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Nejadmoghaddam M-R, Minai-Tehrani A, Ghahremanzadeh R, Mahmoudi M, Dinarvand R, Zarnani A-H. Antibody–drug conjugates: possibilities and challenges. Avicenna J Med Biotechnol. 2019;11:3–23.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dawid Sigorski.

Ethics declarations

Conflict of interest

Dawid Sigorski, Paweł Różanowski, Ewa Iżycka-Świeszewska, and Katarzyna Wiktorska declare they have no conflicts of interest that might be relevant to the contents of this manuscript.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Code availability

Not applicable.

Availability of data and material data

Available upon request.

Author contributions

All authors contributed to the study concept and design. The idea for the article was conceived by PR and DS, and the literature search and data analysis was undertaken by DS, PR, KW, and EI-Ś. Drafting of the manuscript was performed by DS, and critical revision of the manuscript was performed by PR, EI-Ś, and KW.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sigorski, D., Różanowski, P., Iżycka-Świeszewska, E. et al. Antibody–Drug Conjugates in Uro-Oncology. Targ Oncol 17, 203–221 (2022). https://doi.org/10.1007/s11523-022-00872-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11523-022-00872-3

Navigation