Skip to main content
Log in

Eco-Friendly Fabrication of Silver Nanoparticles for Sustainable Water Purification and Antibacterial Synergy

  • RESEARCH
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Silver nanoparticles (AgNPs) were synthesized using the aqueous extract of Terminalia chebula (T-Chebula) fruits. Characterization through X-ray diffraction (XRD) and scanning electron microscopy (SEM) revealed AgNPs with a crystalline size ranging from 21 to 24 nm. The biosynthesized AgNPs exhibited a morphology unique to T-Chebula-AgNPs (TC-AgNPs), with an average size of 50 nm and a band gap energy of 2.8 eV. Evaluation of antimicrobial properties against Escherichia coli (E. coli) showcased the potential antibacterial activity of AgNPs compared to the standard gentamicin antibiotic. Notably, increasing concentrations of TC-AgNPs correlated with larger zones of inhibition, highlighting their efficacy. In contrast, the T-Chebula extract alone showed no bactericidal activity. Furthermore, under visible light irradiation, TC-AgNPs exhibited significant catalytic potential in degrading water-soluble industrial methylene (MB) dyes, achieving 92% dye degradation rate compared to the previous studies. The stability and recyclability of TC-AgNPs were notably robust across three iterations. Biogenically synthesized TC-AgNPs demonstrate exceptional potential in degrading organic pollutants and deactivating microorganisms. These findings underscore their promising applications in microbial control and the photodegradation of organic pollutants, highlighting their role in sustainable environmental remediation efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

No datasets were generated or analyzed during the current study.

References

  1. Ahmad J et al (2016) Differential cytotoxicity of copper ferrite nanoparticles in different human cells. J Appl Toxicol 36(10):1284–1293

    Article  CAS  PubMed  Google Scholar 

  2. He HM et al (2022) Metal-organic framework supported Au nanoparticles with organosilicone coating for high-efficiency electrocatalytic N2 reduction to NH3. Appl Catal B-Environ 302

  3. Ijaz I, Gilani E, Nazir A, Bukhari A (2020) Detail review on chemical, physical and green synthesis, classification, characterizations and applications of nanoparticles. Green Chem Lett Rev 13(3):223–245

    Article  CAS  Google Scholar 

  4. Weiss C, Carriere M, Fusco L, Capua I, Regla-Nava JA, Pasquali M, Delogu LG (2020) Toward nanotechnology-enabled approaches against the COVID-19 pandemic. ACS Nano 14(6):6383–6406

  5. Devi D, Julkapli NM, Sagadevan S, Johan MR (2023) Eco-friendly green synthesis approach and evaluation of environmental and biological applications of Iron oxide nanoparticles. Inorganic Chem Commun 110700

  6. Ogundare SA, Adesetan TO, Muungani G, Moodley V, Amaku JF, Atewolara-Odule OC, van Zyl WE (2023) Catalytic degradation of methylene blue dye and antibacterial activity of biosynthesized silver nanoparticles using Peltophorum pterocarpum (DC.) leaves. Environ Sci: Adv 2(2):247–256

  7. Sahooli M, Sabbaghi S, Saboori R (2012) Synthesis and characterization of mono sized CuO nanoparticles. Mater Lett 81:169–172

    Article  CAS  Google Scholar 

  8. Das SS et al (2020) Stimuli-responsive polymeric nanocarriers for drug delivery, imaging, and theragnosis. Polymers 12(6)

  9. Chu YM et al (2021) Enhancement in thermal energy and solute particles using hybrid nanoparticles by engaging activation energy and chemical reaction over a parabolic surface via finite element approach. Fractal Fract 5(3)

  10. Mohammad M, Seyedeh NA, Mohsen M, Davood KN, Nima F (2024) Stevia rebaudiana leaf extract mediated green synthesis of cerium oxide nanoparticles for antibacterial activity and photocatalytic degradation of tetracycline, desalination and water treatment 100126

  11. Wang YG et al (2016) Experimental evaluation of the lubrication properties of the wheel/workpiece interface in minimum quantity lubrication (MQL) grinding using different types of vegetable oils. J Clean Prod 127:487–499

    Article  CAS  Google Scholar 

  12. Guo SM et al (2017) Experimental evaluation of the lubrication performance of mixtures of castor oil with other vegetable oils in MQL grinding of nickel-based alloy. J Clean Prod 140:1060–1076

    Article  CAS  Google Scholar 

  13. Wang YG et al (2016) Experimental evaluation of the lubrication properties of the wheel/workpiece interface in MQL grinding with different nanofluids. Tribol Int 99:198–210

    Article  ADS  CAS  Google Scholar 

  14. Koehn FE, Carter GT (2005) The evolving role of natural products in drug discovery. Nat Rev Drug Discov 4:206–220

    Article  CAS  PubMed  Google Scholar 

  15. Kumar KM, Mandal BK, Sinha M, Krishnakumar V (2012) Terminalia chebula mediated green and rapid synthesis of gold nanoparticles. Spectrochim Acta Part A Mol Biomol Spectrosc 86:490–494

    Article  ADS  Google Scholar 

  16. Espenti CS, Rao KK, Rao KM (2016) Bio-synthesis and characterization of silver nanoparticles using Terminalia chebula leaf extract and evaluation of its antimicrobial potential. Mater Lett 174:129–133

    Article  CAS  Google Scholar 

  17. Yatish KV, Prakash RM, Ningaraju C, Sakar M, GeethaBalakrishna R, Lalithamba HS (2021) Terminalia chebula as a novel green source for the synthesis of copper oxide nanoparticles and as feedstock for biodiesel production and its application on diesel engine. Energy 215:119165

    Article  CAS  Google Scholar 

  18. Ankegowda VM, Kollur SP, Prasad SK, Pradeep S, Dhramashekara C, Jain AS, Shivamallu C (2020) Phyto-mediated synthesis of silver nanoparticles using Terminalia chebula fruit extract and evaluation of its cytotoxic and antimicrobial potential. Molecules 25(21):5042

  19. Kumar KM, Mandal BK, Kumar KS, Reddy PS, Sreedhar B (2013) Biobased green method to synthesise palladium and iron nanoparticles using Terminalia chebula aqueous extract. Spectrochim Acta Part A Mol Biomol Spectrosc 102:128–133

    Article  ADS  Google Scholar 

  20. Tharani M, Rajeshkumar S, Al-Ghanim KA, Nicoletti M, Sachivkina N, Govindarajan M (2023) Terminalia chebula-assisted silver nanoparticles: biological potential, synthesis, characterization, and ecotoxicity. Biomedicines 11(5):1472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Karade VC, Patil RB, Parit SB, Kim JH, Chougale AD, Dawkar VV (2021) Insights into shape-based silver nanoparticles: a weapon to cope with pathogenic attacks. ACS Sustain Chem Eng 9(37):12476–12507

    Article  CAS  Google Scholar 

  22. Benn T, Cavanagh B, Hristovski K, Posner JD, Westerhoff P (2010) The release of nanosilver from consumer products used in the home. J Environ Qual 39(6):1875–1882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kessler R (2011) Engineered nanoparticles in consumer products: understanding a new ingredient

  24. Cascio C, Geiss O, Franchini F, Ojea-Jimenez I, Rossi F, Gilliland D, Calzolai L (2015) Detection, quantification and derivation of number size distribution of silver nanoparticles in antimicrobial consumer products. J Anal At Spectrom 30(6):1255–1265

    Article  CAS  Google Scholar 

  25. Kalakonda P (2016) Synthesis of silver nanowires for highly conductive and transparent films. Nanomater Nanotechnol 6

  26. Kalakonda P, Sreenivas B (2017) Synthesis and optical properties of highly stabilized peptide-coated gold nanoparticles. Plasmonics 12(4):1221–1225

    Article  CAS  Google Scholar 

  27. Kalakonda P, Banne S (2018) Synthesis and optical properties of highly stabilized peptide-coated silver nanoparticles. Plasmonics 13(4):1265–1269

    Article  CAS  Google Scholar 

  28. Kalakonda P et al (2017) Microfibrous silver-coated polymeric scaffolds with tunable mechanical properties. RSC Adv 7(55):34331–34338

    Article  ADS  CAS  Google Scholar 

  29. Hashemi N et al (2021) Leishmanicidal activities of biosynthesized BaCO3 (witherite) nanoparticles and their biocompatibility with macrophages. Bioprocess Biosyst Eng 44(9):1957–1964

    Article  CAS  PubMed  Google Scholar 

  30. Ren SC et al (2022) Well-defined coordination environment breaks the bottleneck of organic synthesis: Single-atom palladium catalyzed hydrosilylation of internal alkynes. Nano Res 15(2):1500–1508

    Article  ADS  CAS  Google Scholar 

  31. Gao T et al (2020) Surface morphology assessment of CFRP transverse grinding using CNT nanofluid minimum quantity lubrication. J Cleaner Product 277

  32. Yang M et al (2019) Predictive model for minimum chip thickness and size effect in single diamond grain grinding of zirconia ceramics under different lubricating conditions. Ceram Int 45(12):14908–14920

    Article  CAS  Google Scholar 

  33. Song JY, Kim BS (2009) Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess Biosyst Eng 32(1):79–84

    Article  PubMed  Google Scholar 

  34. Vigneshwaran N et al (2007) Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. Mater Lett 61(6):1413–1418

    Article  CAS  Google Scholar 

  35. Kalishwaralal K et al (2010) Biosynthesis of silver and gold nanoparticles using Brevibacterium casei. Colloids and Surfaces B-Biointerfaces 77(2):257–262

    Article  CAS  PubMed  Google Scholar 

  36. Kharissova OV et al (2013) The greener synthesis of nanoparticles. Trends Biotechnol 31(4):240–248

    Article  CAS  PubMed  Google Scholar 

  37. Bosetti M et al (2002) Silver coated materials for external fixation devices: in vitro biocompatibility and genotoxicity. Biomaterials 23(3):887–892

    Article  CAS  PubMed  Google Scholar 

  38. Kalakonda P, Thudumu S, Mynepally S et al (2023) Engineering micro/nano-fibrous scaffolds with silver coating for tailored wound repair applications. J Nanopart Res 25:254

    Article  CAS  Google Scholar 

  39. Kalakonda P, Kumar DN, Rajitha K et al (2023) Facile synthesis of silver nanoparticles using green tea leaf extract and evolution of antibacterial activity. Plasmonics 18:1837–1845

    Article  Google Scholar 

  40. Kalakonda P, Chinmayee S, Preethi B et al (2023) Green synthesis of silver nanoparticles using Argyreia nervosa leaf extract and their antimicrobial activity. Plasmonics 18:1075–1081

    Article  Google Scholar 

  41. Khan S, Singh S, Gaikwad S, Nawani N, Junnarkar M, Pawar SV (2020) Optimization of process parameters for the synthesis of silver nanoparticles from Piper betle leaf aqueous extract, and evaluation of their antiphytofungal activity. Environ Sci Pollut Res 27:27221–27233

    Article  CAS  Google Scholar 

  42. Anchan S, Pai S, Sridevi H, Varadavenkatesan T, Vinayagam R, Selvaraj R (2019) Biogenic synthesis of ferric oxide nanoparticles using the leaf extract of Peltophorum pterocarpum and their catalytic dye degradation potential. Biocatal Agric Biotechnol 20:101251

    Article  Google Scholar 

  43. Hadi AA, Ng JY, Shamsuddin M, Matmin J, Malek NANN (2022) Green synthesis of silver nanoparticles using Diplazium esculentum extract: catalytic reduction of methylene blue and antibacterial activities. Chem Pap 76:65–77

    Article  CAS  Google Scholar 

  44. Kalakonda P, Rajitha K, Chandrashekar B et al (2023) Biomimetic synthesis of copper nanoparticles using Tinospora cordifolia plant leaf extract for photocatalytic activity applications. Plasmonics

  45. Kalakonda P, Bashitangu A, Mandal P (2024) Sarvani Jowhar Khanam, Murali Banovath, Imran Hasan, Bala Bhaskar Podila, Sustainable solutions for clean water: green synthesized Cu-Ag-Bimetallic nanoparticles based nano catalyst. Mater Sci Eng, B 301:117147

    Article  CAS  Google Scholar 

  46. Sanjay P, Deepa K, Madhavan J, Senthil S (2018) Performance of TiO2 based dye-sensitized solar cells fabricated with dye extracted from leaves of Peltophorum pterocarpum and Acalypha amentacea as sensitizer. Mater Lett 219:158–162

    Article  CAS  Google Scholar 

  47. Selvaraj R, Pai S, Murugesan G, Pandey S, Bhole R, Gonsalves D, Vinayagam R (2021) Green synthesis of magnetic α–Fe2O3 nanospheres using Bridelia retusa leaf extract for Fenton-like degradation of crystal violet dye. Appl Nanosci 11(8):2227–2234

  48. Mohamed-Salem R, Rodríguez Fernández C, Nieto-Pelegrín E, Conde-Valentin B, Rumbero A, Martinez-Quiles N (2019) Aqueous extract of Hibiscus sabdariffa inhibits pedestal induction by enteropathogenic E. coli and promotes bacterial filamentation in vitro. Plos one 14(3)e0213580

  49. Mohamed EAA, Muddathir AM, Osman MA (2020) Antimicrobial activity, phytochemical screening of crude extracts, and essential oils constituents of two Pulicaria spp. growing in Sudan. Sci Rep 10(1):1–8

  50. Kalakonda P, Mandal P, Laxmi Mynepally S et al (2024) Comparison of multi-metallic nanoparticles-alternative antibacterial agent: understanding the role of their antibacterial properties. J Inorg Organomet Polym. https://doi.org/10.1007/s10904-023-02960-x

    Article  Google Scholar 

  51. Chirumamilla P, Dharavath SB, Taduri S (2023) Eco-friendly green synthesis of silver nanoparticles from leaf extract of Solanum khasianum: optical properties and biological applications. Appl Biochem Biotechnol 195:353–368

    Article  CAS  PubMed  Google Scholar 

  52. Alzubaidi AK, Al-Kaabi WJ, Ali AA, Albukhaty S, Al-Karagoly H, Sulaiman GM, Asiri M, Khane Y (2023) Green synthesis and characterization of silver nanoparticles using flaxseed extract and evaluation of their antibacterial and antioxidant activities. Appl Sci 13:2182. https://doi.org/10.3390/app13042182

    Article  CAS  Google Scholar 

  53. Khane Y, Benouis K, Albukhaty S, Sulaiman GM, Abomughaid MM, Al Ali A, Aouf D, Fenniche F, Khane S, Chaibi W et al (2013) Green synthesis of silver nanoparticles using aqueous Citrus limon zest extract: characterization and evaluation of their antioxidant and antimicrobial properties. Nanomaterials 2022:12

    Google Scholar 

  54. El-Khawaga AM, Elsayed MA, Gobara M et al (2023) Green synthesized ZnO nanoparticles by Saccharomyces cerevisiae and their antibacterial activity and photocatalytic degradation. Biomass Conv Bioref

  55. El-Khawaga AM, Tantawy H, Elsayed MA et al (2022) Synthesis and applicability of reduced graphene oxide/porphyrin nanocomposite as photocatalyst for waste water treatment and medical applications. Sci Rep 12:17075

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  56. El-Khawaga AM, Elsayed MA, Fahim YA et al (2023) Promising photocatalytic and antimicrobial activity of novel capsaicin coated cobalt ferrite nanocatalyst. Sci Rep 13:5353

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  57. Elbasuney S, El-Khawaga AM, Elsayed MA et al (2023) Enhanced photocatalytic and antibacterial activities of novel Ag-HA bioceramic nanocatalyst for waste-water treatment. Sci Rep 13:13819

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  58. Abd Elkodous M, El-Sayyad GS, Youssry SM et al (2020) Carbon-dot-loaded CoxNi1−xFe2O4; x = 0.9/SiO2/TiO2 nanocomposite with enhanced photocatalytic and antimicrobial potential: an engineered nanocomposite for wastewater treatment. Sci Rep 10:11534

Download references

Acknowledgements

1. The authors would like to thank the Department of Physics at Government City College for their support in completing this project. 2. The authors also extend their thanks to Researchers Supporting Project (Ref;RSPD2024R670), King Saud University, Riyadh, Saudi Arabia.

Funding

No funding was received for this project.

Author information

Authors and Affiliations

Authors

Contributions

Parvathalu Kalakonda: Supervision, writing-original draft and editing, visualization Mahesh Thodeti, Cheguveera Ganneboina, Saroj Vijaylaxmi, Keerthi Ankathi, Swetha Kathri, Karthik Begari, Hruthik Sai Kante, Vijendar Jupalli, : Designing experiment, and Data collection, Yasaswi Khaderabad & Vijay Morampudi: Designing experiment procedure and investigation antibacterial activity Vasudeva Reddy Yattam, Bala Bhaskar Podila, Imran, Hasan & Pritam Mandal: Review of articles and data analysis.

Corresponding author

Correspondence to Parvathalu Kalakonda.

Ethics declarations

Ethical Approval

Internal review board committee of our lab states that we do not have any consent to publish this antimicrobial and other data.

Competing Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalakonda, P., Thodeti, M., Ganneboina, C. et al. Eco-Friendly Fabrication of Silver Nanoparticles for Sustainable Water Purification and Antibacterial Synergy. Plasmonics (2024). https://doi.org/10.1007/s11468-024-02251-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11468-024-02251-2

Keywords

Navigation