Skip to main content

Advertisement

Log in

Leishmanicidal activities of biosynthesized BaCO3 (witherite) nanoparticles and their biocompatibility with macrophages

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The aim of this study was cost-effective and greener synthesis of barium carbonate (BaCO3 or witherite) nanoparticles with economic importance, and to evaluate their therapeutic potentials and biocompatibility with immune cells. Barium carbonate nanoparticles were biosynthesized using black elderberry extract in one step with non-toxic precursors and simple laboratory conditions; their morphologies and specific structures were analyzed using field emission scanning electron microscopy with energy dispersive X-ray spectroscopy (FESEM-EDX). The therapeutic capabilities of these nanoparticles on the immune cells of murine macrophages J774 and promastigotes Leishmania tropica were evaluated. BaCO3 nanoparticles with IC50 = 46.6 µg/mL were more effective than negative control and glucantium (positive control) in reducing promastigotes (P < 0.01). Additionally, these nanoparticles with a high value of cytotoxicity concentration 50% (CC50) were less toxic to macrophage cells than glucantime; however, they were significantly different at high concentrations compared to the negative control.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Adler S (1964) Leishmania. AdvParasitol 2:35–96

    CAS  Google Scholar 

  2. Alavi MA, Morsali A (2008) Syntheses of BaCO3 nanostructures by ultrasonic method. UltrasonSonochem 15:833–838

    CAS  Google Scholar 

  3. Alijani HQ, Pourseyedi S, Torkzadeh-Mahani M, Seifalian A, Khatami M (2020) Bimetallic nickel-ferrite nanorod particles: greener synthesis using rosemary and its biomedical efficiency. Artif Cells NanomedBiotechnol 48:242–251. https://doi.org/10.1080/21691401.2019.1699830

    Article  CAS  Google Scholar 

  4. AlinaghiLangari A et al (2021) CeO2 foam-like nanostructure: biosynthesis and their efficient removal of hazardous dye. Bioprocess BiosystEng 44:517–523. https://doi.org/10.1007/s00449-020-02464-9

    Article  CAS  Google Scholar 

  5. Alvino L, Pacheco-Herrero M, López-Lorente ÁI, Quiñones Z, Cárdenas S, González-Sánchez ZI (2020) Oxicity evaluation of barium ferrite nanoparticles in bacteria, yeast and nematode. Chemosphere 126786

  6. Azhdari S et al (2020) Metallic SPIONP/AgNP synthesis using a novel natural source and their antifungal activities. RSC Adv 10:29737–29744

    Article  CAS  Google Scholar 

  7. Barani M, Nematollahi MH, Zaboli M, Mirzaei M, Torkzadeh-Mahani M, Pardakhty A, Karam GA (2019) Insilico and in vitro study of magnetic niosomes for gene delivery: the effect of ergosterol and cholesterol. Mater SciEng: C 94:234–246. https://doi.org/10.1016/j.msec.2018.09.026

    Article  CAS  Google Scholar 

  8. Barani M, Sabir F, Rahdar A, Arshad R, Kyzas GZ (2020) Nanotreatment and nanodiagnosis of prostate cancer: recent updates. Nanomaterials 10:1696

    Article  CAS  Google Scholar 

  9. Chen G, Chen J, Liu L, Srinivasakannan C, Peng J (2013) Synthesis and characterization of BaCO3 nanoparticles with different morphologies by microwave homogenous precipitation high temperature. Mater Process 32:47–50

    Article  Google Scholar 

  10. Dağlıoğlu Y, Yılmaz Öztürk B (2018) Effect of concentration and exposure time of ZnO–TiO2 nanocomposite on photosynthetic pigment contents, ROS production ability, and bioaccumulation of freshwater algae (Desmodesmus multivariabilis). Caryologia 71:13–23. https://doi.org/10.1080/00087114.2017.1400262

    Article  Google Scholar 

  11. Dağlıoğlu Y, Yılmaz Öztürk B (2019) A novel intracellular synthesis of silver nanoparticles using Desmodesmus sp. (Scenedesmaceae): different methods of pigment change. RendiLinceiSciFis Nat 30:611–621. https://doi.org/10.1007/s12210-019-00822-8

    Article  Google Scholar 

  12. Das S, Roy P, Mondal S, Bera T, Mukherjee A (2013) One pot synthesis of gold nanoparticles and application in chemotherapy of wild and resistant type visceral leishmaniasis. Colloids Surf B Biointerfaces 107:27–34

    Article  CAS  Google Scholar 

  13. Fanti JR et al (2018) Biogenic silver nanoparticles inducing Leishmania amazonensispromastigote and amastigote death in vitro. Acta Trop 178:46–54

    Article  CAS  Google Scholar 

  14. Foroughi MM, Jahani S, Rajaei M (2019) Facile fabrication of 3D dandelion-like cobalt oxide nanoflowers and its functionalization in the first electrochemical sensing of oxymorphone: evaluation of kinetic parameters at the surface electrode. J ElectrochemSoc 166:B1300–B1311. https://doi.org/10.1149/2.0511914jes

    Article  CAS  Google Scholar 

  15. Gupta S, Saxena A (2019) Curvature distribution and autocorrelations in elliptic cylinders and cones. AIP Adv 9:085304

    Article  Google Scholar 

  16. Hamidian K, Najafidoust A, Miri A, Sarani M (2021) Photocatalytic performance on degradation of Acid Orange 7 dye using biosynthesized un-doped and Co doped CeO2 nanoparticles. Mater Res Bull 138:111206. https://doi.org/10.1016/j.materresbull.2021.111206

    Article  CAS  Google Scholar 

  17. Hamidian K, Saberian MR, Miri A, Sharifi F, Sarani M (2021) Doped and un-doped cerium oxide nanoparticles: biosynthesis, characterization, and cytotoxic study. Ceram Int 47:13895–13902. https://doi.org/10.1016/j.ceramint.2021.01.256

    Article  CAS  Google Scholar 

  18. Hawkins J, Baker C, Cherry L, Dunne E (2019) Black elderberry (Sambucus nigra) supplementation effectively treats upper respiratory symptoms: a meta-analysis of randomized, controlled clinical trials. Complement Therap Med 42:361–365

    Article  Google Scholar 

  19. Iranmanesh T, Foroughi MM, Jahani S, ShahidiZandi M, HassaniNadiki H (2020) Green and facile microwave solvent-free synthesis of CeO2 nanoparticle-decorated CNTs as a quadruplet electrochemical platform for ultrasensitive and simultaneous detection of ascorbic acid, dopamine, uric acid and acetaminophen. Talanta 207:120318. https://doi.org/10.1016/j.talanta.2019.120318

    Article  CAS  PubMed  Google Scholar 

  20. Iravani S, Korbekandi H, Mirmohammadi SV, Zolfaghari B (2014) Synthesis of silver nanoparticles: chemical, physical and biological methods. Res Pharm Sci 9:385–406

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Jaleh B, Karami S, Sajjadi M, Mohazzab BF, Azizian S, Nasrollahzadeh M, Varma RS (2020) Laser-assisted preparation of Pd nanoparticles on carbon cloth for the degradation of environmental pollutants in aqueous medium. Chemosphere 246:125755

    Article  CAS  Google Scholar 

  22. Jamdagni P, Rana JS, Khatri P, Nehra K (2018) Comparative account of antifungal activity of green and chemically synthesized zinc oxide nanoparticles in combination with agricultural fungicides. Int J Nano Dimension 9:198–208

    CAS  Google Scholar 

  23. Khan FU et al (2016) Antioxidant and catalytic applications of silver nanoparticles using Dimocarpus longan seed extract as a reducing and stabilizing agent. J PhotochemPhotobiol B Biol 164:344–351. https://doi.org/10.1016/j.jphotobiol.2016.09.042

    Article  CAS  Google Scholar 

  24. Khatami M, Alijani HQ, Heli H, Sharifi I (2018) Rectangular shaped zinc oxide nanoparticles: green synthesis by Stevia and its biomedical efficiency. Ceram Int 44:15596–15602. https://doi.org/10.1016/j.ceramint.2018.05.224

    Article  CAS  Google Scholar 

  25. Khatami M, Iravani S (2021) Green and eco-friendly synthesis of nanophotocatalysts: an overview. Comments Inorg Chem 1–55. https://doi.org/10.1080/02603594.2021.1895127

  26. Khatami M, Iravani S, Varma RS, Mosazade F, Darroudi M, Borhani F (2019) Cockroach wings-promoted safe and greener synthesis of silver nanoparticles and their insecticidal activity. Bioprocess BiosystEng 42:2007–2014. https://doi.org/10.1007/s00449-019-02193-8

    Article  CAS  Google Scholar 

  27. Miri A, Mahdinejad N, Ebrahimy O, Khatami M, Sarani M (2019) Zinc oxide nanoparticles: biosynthesis, characterization, antifungal and cytotoxic activity. Mater SciEng C 104:109981. https://doi.org/10.1016/j.msec.2019.109981

    Article  CAS  Google Scholar 

  28. Miri A, Najafzadeh H, Darroudi M, Miri MJ, Kouhbanani MAJ, Sarani M (2021) Iron oxide nanoparticles: biosynthesis, magnetic behavior, cytotoxic effect. ChemistryOpen 10:327–333. https://doi.org/10.1002/open.202000186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nagajyothi P, Pandurangan M, Sreekanth T, Shim J (2016) In vitro anticancer potential of BaCO3 nanoparticles synthesized via green route. J PhotochemPhotobiol B Biol 156:29–34

    Article  CAS  Google Scholar 

  30. Radwan M, Rashad M, Hessien M (2007) Synthesis and characterization of barium hexaferrite nanoparticles. J Mater Process Technol 181:106–109

    Article  CAS  Google Scholar 

  31. Raeisi M et al (2021) Magnetic cobalt oxide nanosheets: green synthesis and in vitro cytotoxicity. Bioprocess BiosystEng. https://doi.org/10.1007/s00449-021-02518-6

    Article  Google Scholar 

  32. Rahdar A, Hajinezhad MR, Sargazi S, Barani M, Bilal M, Kyzas GZ (2021) Deferasirox-loaded pluronicnanomicelles: synthesis, characterization, in vitro and in vivo studies. J Mol Liquids 323:114605

    Article  CAS  Google Scholar 

  33. Sabouri Z, Akbari A, Hosseini HA, Khatami M, Darroudi M (2020) Tragacanth-mediate synthesis of NiOnanosheets for cytotoxicity and photocatalytic degradation of organic dyes. Bioprocess BiosystEng 43:1209–1218. https://doi.org/10.1007/s00449-020-02315-7

    Article  CAS  Google Scholar 

  34. Sargazi G, Afzali D, Ghafainazari A, Saravani H (2014) Rapid synthesis of cobalt metal organic framework. J InorgOrganometPolym Mater 24:786–790. https://doi.org/10.1007/s10904-014-0042-z

    Article  CAS  Google Scholar 

  35. Sargazi G et al (2019) Chitosan/polyvinyl alcohol nanofibrous membranes: towards green super-adsorbents for toxic gases. Heliyon 5:e01527

    Article  Google Scholar 

  36. Sharifi F et al (2012) Spatial distribution and molecular identification of Leishmania species from endemic foci of south-eastern Iran. Iran J Parasitol 7:45

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Sharifi I et al (2015) A comprehensive review of cutaneous leishmaniasis in Kerman Province, Southeastern Iran-narrative review article. Iran J Public Health 44:299–307

    PubMed  PubMed Central  Google Scholar 

  38. Sharifi F, Sharififar F, Sharifi I, Alijani HQ, Khatami M (2018) Cytotoxicity, leishmanicidal, and antioxidant activity of biosynthesised zinc sulphide nanoparticles using Phoenix dactylifera. IET Nanobiotechnol 12:264–269

    Article  Google Scholar 

  39. Sharma P, Virk H (2009) Fabrication of nanoparticles of barium carbonate/oxalate using reverse Micelle technique. Open Surf Sci J 1

  40. Srivastava N, Joshi KV, Thakur AK, Menon SK, Shahi VK (2014) BaCO3 nanoparticles embedded retentive and cation selective membrane for separation/recovery of Mg2+ from natural water sources. Desalination 352:142–149

    Article  CAS  Google Scholar 

  41. Staneva D, Koutzarova T, Vertruyen B, Vasileva-Tonkova E, Grabchev I (2017) Synthesis, structural characterization and antibacterial activity of cotton fabric modified with a hydrogel containing barium hexaferrite nanoparticles. J MolStruct 1127:74–80

    Article  CAS  Google Scholar 

  42. Thongtem T, Tipcompor N, Phuruangrat A, Thongtem S (2010) Characterization of SrCO3 and BaCO3 nanoparticles synthesized by sonochemical method. Mater Lett 64:510–512

    Article  CAS  Google Scholar 

  43. Varshosaz J, Arbabi B, Pestehchian N, Saberi S, Delavari M (2018) Chitosan-titanium dioxide-glucantimenanoassemblies effects on promastigote and amastigote of Leishmania major. Int J BiolMacromol 107:212–221

    Article  CAS  Google Scholar 

  44. Yılmaz Öztürk B, YeniceGürsu B, Dağ İ (2020) Antibiofilm and antimicrobial activities of green synthesized silver nanoparticles using marine red algae Gelidium corneum. Process Biochem 89:208–219. https://doi.org/10.1016/j.procbio.2019.10.027

    Article  CAS  Google Scholar 

  45. Zamani S, Hoseini AZ, Namin AM (2019) Glucose-6-phosphate dehydrogenase (G6PD) activity can modulate macrophage response to Leishmania major infection. IntImmunopharmacol 69:178–183

    Article  CAS  Google Scholar 

  46. Zelati A, Amirabadizadeh A, Kompany A (2011) Preparation and characterization of barium carbonate nanoparticles. Int J ChemEngAppl 2:299

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Shahid Beheshti and Bam University of Medical Sciences and, the VEGA Agency under the Contract no. 2/0140/20. Electron microscopy at the Institute of Macromolecular Chemistry was supported through grants 17-05007S (Czech Science Foundation) and POLYMAT LO1507 (Ministry of Education, Youth and Sports of the CR, program NPU I).

Author information

Authors and Affiliations

Authors

Contributions

All the authors have read and approved the final manuscript.

Corresponding authors

Correspondence to Fariba Borhani or Mehrdad Khatami.

Ethics declarations

Conflict of interest

The authors confirm that the content of this article involves no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashemi, N., Alijani, H.Q., Mousazadeh, F. et al. Leishmanicidal activities of biosynthesized BaCO3 (witherite) nanoparticles and their biocompatibility with macrophages. Bioprocess Biosyst Eng 44, 1957–1964 (2021). https://doi.org/10.1007/s00449-021-02576-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-021-02576-w

Keywords

Navigation