Skip to main content

Advertisement

Log in

Photonic Crystal–Based Nanoscale Multipurpose Biosensor for Detection of Brain Tumours, HIV, and Anaemia with High Sensitivity

  • RESEARCH
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

A nanoscale-based 2D-photonic crystal (PhC) biosensor with silicon rods arranged in a triangular lattice structure is proposed in this work. The unique characteristic of the proposed structure is the design of dual nanocavity where two different rod radii are used within the ring resonator. The plane-wave expansion (PWE) method is used to analyse photonic band gaps (PBGs) and the sensing parameters are analysed using finite difference time domain (FDTD) techniques. The proposed biosensor is aimed at detecting the brain tissues, human immune deficiency virus (HIV)–infected blood samples, and sickle cell anaemia. The sensor proved its efficiency in detecting and distinguishing accurately between the brain tissues that are normal and aberrant (tumorourous, malignant, and damaged tissues). The proposed sensor achieves a high-quality factor (QF) of 9867, a high sensitivity of 1105 nm/RIU with an extremely low detection limit (DL) of 0.70 × 10−5, towards brain tissue analysis. This sensor can distinguish between a normal blood sample and HIV-infected samples. The QF, sensitivity, and DL of the biosensor for the HIV-infected sample are 2720, 1034 nm/RIU, and 2.61 × 10−5 RIU respectively. The sensor also proved its efficiency in analysing sickle cell anaemia in the blood sample. The QF and sensitivity of the biosensor are 6428 and 1071 nm/RIU respectively towards anaemia prediction. The proposed nanoscale photonic sensor could be a promising platform for other biomedical applications, such as the detection of various diseases at the cellular level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. American Association of Neurological Surgeons. Brain Tumors. https://www.aans.org/en/Patients/Neurosurgical-Conditions-and-Treatments/Brain-Tumours

  2. Mayo Clinic (2023) Brain Tumor. https://www.mayoclinic.org/diseases-conditions/brain-tumour/symptoms-causes/syc-20350084#:~:text=A%20brain%20tumour%20is%20a,the%20surface%20of%20the%20brain. Accessed 1 Apr 2023

  3. Mohammed NA, Khedr OE, El-Rabaie ES, Khalaf AA (2023) Brain tumours biomedical sensor with high-quality factor and ultra-compact size based on nanocavity 2D photonic crystal. Alex Eng J 64:527–540. https://doi.org/10.1016/j.aej.2022.09.020

  4. Joannopoulos JD, Villeneuve PR, Fan S (1997) Photonic crystals: putting a new twist on light. Nature 386(6621):143–149

    Article  CAS  Google Scholar 

  5. Joannopoulos JD, Johnson SG, Winn JN, Meade RD (2011) Photonic crystals: molding the flow of light. Princeton university press

  6. Mohammed NA, Hamed MM, Khalaf AA, Alsayyari A, El-Rabaie S (2019) High-sensitivity ultra-quality factor and remarkable compact blood components biomedical sensor based on nanocavity coupled photonic crystal. Results Phys 102478. https://doi.org/10.1016/j.rinp.2019.102478

  7. Chen Y, Wang W, Zhu Q (2014) Theoretical study on biosensing characteristics of heterostructure photonic crystal ring resonator. Optik-Int J Light Electron Opt 125(15):3931–3934

    Article  CAS  Google Scholar 

  8. Natesan A, Govindasamy KP, Gopal TR, Dhasarathan V, Aly AH (2019) Tricore photonic crystal fibre based refractive index sensor for glucose detection. IET Optoelectron 13(3):118–123. https://doi.org/10.1049/iet-opt.2018.5079

    Article  Google Scholar 

  9. Areed NFF, Hameed MFO, Obayya SSA (2017) Highly sensitive face-shaped label free photonic crystal refractometer for glucose concentration monitoring. Opt Quant Electron 49:1–12

    Article  Google Scholar 

  10. Suganya T, Robinson S (2017) 2D photonic crystal based biosensor using rhombic ring resonator for glucose monitoring. J Microelectron 3

  11. Robinson S, Dhanlaksmi N (2017) Photonic Crystal based Biosensor for the Detection of Glucose Concentration in Urine. Photonic Sens 7(1):11–19. https://doi.org/10.1007/s13320-016-0347-3

    Article  CAS  Google Scholar 

  12. Mohamed MS, Hameed MFO, Areed NFF, El-Okr MM, Obayya SSA (2016) Analysis of highly sensitive photonic crystal biosensor for glucose monitoring. Appl Comput Electromagn Soc J 836–842

  13. Gudagunti FD, Sharma P, Talabattula S, Nainitej V (2014) Early-stage detection of breast cancer using hybrid photonic crystal ring resonator. In Proceeding of IEEE International Conference on Advanced Communication Control and Computing Technologies, Ramanathapuram pp. 1–4

  14. Sharan P, Bharadwaj SM, Gudagunti FD, Deshmukh P (2014) Design and modeling of photonic sensor for cancer cell detection. International Conference on the Impact of E-Technology on US 40(14):20–25

    Google Scholar 

  15. Miyan H, Agrahari R, Gowre SK, Mahto M, Jain PK (2022) Computational study of a compact and high sensitive photonic crystal for cancer cells detection. IEEE Sens J 22(4):3298–3305. https://doi.org/10.1109/JSEN.2022.3141124

    Article  CAS  Google Scholar 

  16. Mohammed NA, Hamed MM, Khalaf AAM, Alsayyari A, El-Rabaie S (2019) High-sensitivity ultra-quality factor and remarkable compact blood components biomedical sensor based on nanocavity coupled photonic crystal. Results Phys 14:102478. https://doi.org/10.1016/j.rinp.2019.102478

  17. Biswas U, Rakshit JK (2020) Detection and analysis of haemoglobin concentration in blood with the help of photonic crystal based micro ring resonator structure. Opt Quantum Electron 52(10). https://doi.org/10.1007/s11082-020-02566-4

  18. Parandin F, Heidari F, Aslinezhad M et al (2022) Design of 2D photonic crystal biosensor to detect blood components. Opt Quant Electron 54:618. https://doi.org/10.1007/s11082-022-03945-9

    Article  CAS  Google Scholar 

  19. Arunkumar R, Suganya T, Robinson S (2019) Design and analysis of 2D photonic crystal based biosensor to detect different blood components. Photonic Sens 9(1):69–77

    Article  CAS  Google Scholar 

  20. Sharma S, Kumar A, Singh S, Tyagi HK (2021) 2D photonic crystal based biosensor for the detection of chikungunya virus. Optik. https://doi.org/10.1016/j.ijleo.2021.166575

  21. Mohammed NA, Hamed MM, Khalaf AAM, El-Rabaie S (2020) Malaria biosensors with ultra-sensitivity and quality factor based on cavity photonic crystal designs. Eur Phys J Plus 135:933. https://doi.org/10.1140/epjp/s13360-020-00940-5

  22. Aly AH, Awasthi SK, Mohaseb MA, Matar ZS, Amin AF (2022) MATLAB simulation- based theoretical study for detection of a wide range of pathogens using 1D defective photonic structure. Crystals 12:220. https://doi.org/10.3390/cryst12020220

    Article  CAS  Google Scholar 

  23. Chopra H, Kaler RS, Painam B (2016) Photonic crystal waveguide-based biosensor for detection of diseases. J Nanophotonics 10:036011

    Article  Google Scholar 

  24. Yaroslavsky AN, Yaroslavsky IV, Goldbach T, Schwarzmaier HJ (1996) The optical properties of blood in the near infrared spectral range. Proc SPIE 2678:314–324

  25. Painam B, Kaler RS, Kumar M (2016) Active layer identification of photonic crystal waveguide biosensor chip for the detection of Escherichia coli. Opt Eng 55:077105

    Article  Google Scholar 

  26. Amiri IS, Paul BK, Ahmed K, Aly AH, Zakaria R, Yupapin P, Vigneswaran D (2019) Tri‐core photonic crystal fiber based refractive index dual sensor for salinity and temperature detection. Microw Opt Technol Lett 61(3):847–852

  27. Danaie M, Kiani B (2018) Design of a label-free photonic crystal refractive index sensor for biomedical applications. Photonics Nanostructures-Fundam Appl. https://doi.org/10.1016/j.photonics.2018.06.004

  28. Zhao Y, Zhang YN, Lv RQ, Li J (2017) Electric field sensor based on photonic crystal cavity with Liquid crystal infiltration. J Lightwave Technol 35:3440–3446

    Article  CAS  Google Scholar 

  29. Biswas U, Rakshit JK, Bharti GK (2020) Design of photonic crystal microring resonator based all-optical refractive-index sensor for analyzing different milk constituents. Opt Quant Electron 52(1):19

    Article  CAS  Google Scholar 

  30. Thenmozhi H, Rajan MM, Devika V, Vigneswaran D, Ayyanar N (2017) D-glucose sensor using photonic crystal fiber. Optik-Int J Light Electron Opt 145:489–494

    Article  CAS  Google Scholar 

  31. Arunkumar R, Suganya T, Robinson S (2017) Design and analysis of photonic crystal elliptical ring resonator based pressure sensor. Int J Photonics Opt Technol 3(1):30–33

    Google Scholar 

  32. Xu Y, Hu X, Kundu S, Nag A, Afsarimanesh N, Sapra S, Mukhopadhyay SC, Han T (2019) Silicon-based sensors for biomedical applications: a review. Sensors 19(13):2908. https://doi.org/10.3390/s19132908 

  33. Harraz FA (2014) Porous silicon chemical sensors and biosensors: a review. Sens Actuators B Chem 202:897–912

  34. Santos HA (2014) Porous silicon for biomedical applications; Elsevier: Amsterdam, The Netherlands

  35. Robinsosn S, Nakkeeran R, Advances in photonic crystals, (2013). Photonic crystal ring resonator based optical filters. https://doi.org/10.5772/54533

    Article  Google Scholar 

  36. Olyaee S, Bahabady AM (2015) Design and optimization of diamond-shaped biosensor using photonic crystal nano-ring resonator. Optik - International Journal for Light and Electron Optics. https://doi.org/10.1016/j.ijleo.2015.06.037

    Article  Google Scholar 

  37. Robinson S, Shanthi KV (2016) Analysis of protein concentration based on photonic crystal ring resonator. Int J Opt and Photonics 10:123–130

    Article  Google Scholar 

  38. Al-Dossari M, Aswathi SK, Mohamed AM, Abd El-Gawaad NS, Sabra W, Aly AH (2022) Bio-alcohol sensor based on one-dimensional photonic crystals for detection of organic materials in wastewater. Materials 15(11):4012. https://doi.org/10.3390/ma15114012

  39. National Brain Tumor Society (2023) Brain Tumor Facts. https://braintumour.org/brain-tumours/about-brain-tumours/brain-tumour-facts/

  40. World Health Organization (2023) HIV and AIDS. https://www.who.int/news-room/fact-sheets/detail/hiv-aids. Accessed 13 Jul 2023

  41. Pang Y, Song H, Cheng W (2016) Using optical trap to measure the refractive index of a single animal virus in culture fluid with high precision. Biomed Opt Express 7:1672–1689. https://doi.org/10.1364/BOE.7.001672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mayo Clinic (2023) Anaemia. https://www.mayoclinic.org/diseases-conditions/anemia/symptoms-causes/syc-20351360. Accessed 11 May 2023

  43. Kumar BMH, Vaibhav AM, Srikanth PC (2022) Si/SiO2 based nano-cavity biosensor for detection of anemia, HIV and cholesterol using refractive index of blood sample. Indian J Sci Technol 15(18):899–907. https://doi.org/10.17485/IJST/v15i18.186

  44. Nouman WM, Abd El-Ghany SES, Sallam SM, Dawood AFB, Aly AH (2020) Biophotonic sensor for rapid detection of brain lesions using 1D photonic crystal. Opt Quantum Electron 52:1–14. https://doi.org/10.1140/epjp/s13360-020-00940-5

  45. Malek C, Al-Dossari M, Awasthi SK, Matar ZS, Abd El-Gawaad NS, Sabra W, Aly AH (2022) Employing the defective photonic crystal composed of nanocomposite superconducting material in detection of cancerous brain tumours biosensor: computational study. Crystals 12:540. https://doi.org/10.3390/cryst12040540

  46. Asuvaran A, Elatharasan G (2021) Design of two-dimensional photonic crystal-based biosensor for abnormal tissue analysis. Silicon. https://doi.org/10.1007/s12633-021-01442-4

    Article  Google Scholar 

  47. Malek C, Abdallah SAO, Awasthi SK, Ismail MA, Sabra W, Aly AH (2023) Biophotonic sensor for swift detection of malignant brain tissues by using nanocompositeYBa2Cu3O7/dielectric material as a 1D defective photonic crystal.  13:8115. https://doi.org/10.1038/s41598-023-34601-1

  48. Rakhshani MR (2021) Wide-angle perfect absorber using a 3D nanorod metasurface as a plasmonic sensor for detecting cancerous cells and its tuning with a graphene layer. Photonics Nanostructures Fundam Appl 43:100883

    Article  Google Scholar 

  49. Khani S, Hayati M (2022) Optical biosensors using plasmonic and photonic crystal band-gap structures for the detection of basal cell cancer. Sci Rep 12:5246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kalyani VL, Sharma VK (2023) Design of 2D photonic crystal biosensor for HIV detection using nano cavity and micro cavity based structure. Int J Eng Res Appl ISSN: 2248–9622 13(5):190–196. https://doi.org/10.9790/9622-1305190196

  51. Upender P, Bharathi SP, Kumba SK, Kumar A (2023) A compact metamaterial biosensor for multi-virus detection with tunability and high incidence angle absorption. IEEE Access 11. https://doi.org/10.1109/ACCESS.2023.3336815

  52. Ajad AK, Islam MJ, Kaysir MR, Atai J (2021) Highly sensitive bio sensor based on WGM ring resonator for hemoglobin detection in blood samples. Optik 226:166009

    Article  CAS  Google Scholar 

  53. Bahadoran M, Seyfari AK, Sanati P et al (2022) Label free identification of the different status of anemia disease using optimized double-slot cascaded microring resonator. Sci Rep 12:5548. https://doi.org/10.1038/s41598-022-09504-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Loncar M et al (2000) Design and fabrication of silicon photonic crystal optical waveguides. J Lightwave Technol 18(10):1402

    Article  CAS  Google Scholar 

  55. Prather DW et al (2003) Novel fabrication methods for 2D photonic crystals in silicon slab waveguides. Proc SPIE 4984:89–99

    Article  Google Scholar 

  56. Assefa S et al (2004) Fabrication of photonic crystal waveguides composed of a square lattice of dielectric rods. J Vac Sci Technol B: Microelectron Nanometer Struct Process Meas Phenom 22(6):3363–3365

  57. Assefa S et al (2004) Guiding 1.5μm light in photonic crystals based on dielectric rods. Appl Phys Lett 85(25):6110–6112

    Article  CAS  Google Scholar 

  58. Chiu W-Y et al (2007) A photonic crystal ring resonator formed by SOI nano-rods. Opt Express 15(23):15500–15506

    Article  CAS  PubMed  Google Scholar 

  59. Meng X et al (2011) Design and fabrication of photonic crystals in epitaxial free silicon for ultrathin solar cells. In Asia Commun and Photonics Conf and Exhibit (ACP), IEEE, pp. 1–7

  60. De Ridder et al (2002) Fabrication of photonic crystal slabs and defects using laser interference lithography and focused ion beam-assisted deposition. In Proc 2002 4th Int Conf Transp Opt Networks (IEEE Cat. No. 02EX551), IEEE, 2:14–19

  61. Pang L, Nakagawa W, Fainman Y (2003) Fabrication of two-dimensional photonic crystals with controlled defects by use of multiple exposures and direct write. Appl Opt 42(27):5450–5456

    Article  CAS  PubMed  Google Scholar 

  62. Tokushima M, Yamada H, Arakawa Y (2004) 1.5-μm-wavelength light guiding in waveguides in square-lattice-of-rod photonic crystal slab. Appl Phys Lett 84(21):4298–4300

    Article  CAS  Google Scholar 

  63. Stodolka J et al (2005) Fabrication of two-dimensional hybrid photonic crystals utilizing electron beam lithography. Microelectron Eng 78:442–447

    Article  Google Scholar 

  64. Altissimo M (2010) E-beam lithography for micro-/nanofabrication. Biomicrofluidics 4(2):026503

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

BK: conceptualization, data curation, formal analysis, investigation, methodology, software, and writing original draft.  ECB, RR, and SMN: supervision, validation, visualization, writing, review, and editing.

Corresponding author

Correspondence to Bhuvaneshwari Krishnamoorthi.

Ethics declarations

Ethical Approval

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Britto, E.C., Krishnamoorthi, B., Rajasekar, R. et al. Photonic Crystal–Based Nanoscale Multipurpose Biosensor for Detection of Brain Tumours, HIV, and Anaemia with High Sensitivity. Plasmonics (2024). https://doi.org/10.1007/s11468-024-02199-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11468-024-02199-3

Keywords

Navigation