Skip to main content
Log in

Advances in Metallic-Based Localized Surface Plasmon Sensors for Enhanced Tropical Disease Detection: A Comprehensive Review

  • Review
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Tropical diseases present significant challenges to global health, particularly in resource-limited regions. Early and accurate detection of these diseases is vital for effective management and control. In recent years, metallic-based LSPR sensors have emerged as promising diagnostic tools for sensitive and rapid detection of tropical diseases. This comprehensive review aims to provide an in-depth analysis of the current state of research on metallic-based LSPR sensors for the detection of various tropical diseases. In this study, we focused on the connection between neglected tropical diseases (NTDs) and its risk using metallic-based LSPR sensors to identify potential inflammatory biomarkers. We conducted a literature search using PubMed, Web of Science, and Google Scholar. Only published materials written in English were considered, resulting in the identification of \(\sim\) 220 articles. After a comprehensive evaluation, we selected 35 relevant ones. Our analysis revealed 35 links to neglected tropical diseases, providing valuable insights into their relationship using metallic-based LSPR sensors. Moreover, we explore the potential of metallic-based LSPR sensors in point-of-care testing and their integration with emerging technologies such as microfluidics and smartphone-based diagnostics. This review underscores the need for continued research efforts to develop affordable, sensitive, and user-friendly metallic-based LSPR sensors for early detection and surveillance of tropical diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The data is available on request from the corresponding author.

References

  1. Lee S, Song H, Ahn H, Kim S, Jr Choi, Kim K (2021) Fiber-optic localized surface plasmon resonance sensors based on nanomaterials. Sensors 21(3):819

  2. Xu G, Du X, Wang W, Qu Y, Liu X, Zhao M, Li W, Li YQ (2022) Plasmonic nanozymes: leveraging localized surface plasmon resonance to boost the enzyme-mimicking activity of nanomaterials. Small 18(49):2204131

    Article  CAS  Google Scholar 

  3. Min Y, Wang Y (2020) Manipulating bimetallic nanostructures with tunable localized surface plasmon resonance and their applications for sensing. Front Chem 8:411

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Hong Y, Reinhard BM (2019) Optoplasmonics: basic principles and applications. J Opt 21(11):113001

    Article  CAS  Google Scholar 

  5. Farooq S, Shafique S, Ahsan Z, Cardozo O, Wali F (2022a) Tailoring the scattering response of optical nanocircuits using modular assembly. Nanomaterials 12(17):2962

  6. Khurana K, Jaggi N (2021) Localized surface plasmonic properties of au and ag nanoparticles for sensors: a review. Plasmonics 16(4):981–999

    Article  CAS  Google Scholar 

  7. Yadav A, Gerislioglu B, Ahmadivand A, Kaushik A, Cheng GJ, Ouyang Z, Wang Q, Yadav VS, Mishra YK, Wu Y et al (2021) Controlled self-assembly of plasmon-based photonic nanocrystals for high performance photonic technologies. Nano Today 37:101072

    Article  CAS  Google Scholar 

  8. Janith G, Herath H, Hendeniya N, Attygalle D, Amarasinghe D, Logeeshan V, Wickramasinghe P, Wijayasinghe Y (2023) Advances in surface plasmon resonance biosensors for medical diagnostics: an overview of recent developments and techniques. Journal of Pharmaceutical and Biomedical Analysis Open 2:100019

  9. Siddique S, Chow JC (2020) Application of nanomaterials in biomedical imaging and cancer therapy. Nanomaterials 10(9):1700

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Balitskii O (2021) Recent energy targeted applications of localized surface plasmon resonance semiconductor nanocrystals: a mini-review. Mater Today Energy 20:100629

  11. Kim DM, Park JS, Jung SW, Yeom J, Yoo SM (2021a) Biosensing applications using nanostructure-based localized surface plasmon resonance sensors. Sensors 21(9):3191

  12. Mie G (1908) Optical characteristics of turbid tubes, especially colloidal metal solutions. Ann Phys 330(3):377–445. https://doi.org/10.1002/andp.19083300302

    Article  Google Scholar 

  13. Prodan E, Radloff C, Halas NJ, Nordlander P (2003) A hybridization model for the plasmon response of complex nanostructures. Science 302(5644):419–422

  14. Sarkar S, König TA (2023) Engineering plasmonic hybridization toward advanced optical sensors. Advanced Sensor Research 2300054

  15. Jee Y, Yu Y, Abernathy HW, Lee S, Kalapos TL, Hackett GA, Ohodnicki PR (2018) Plasmonic conducting metal oxide-based optical fiber sensors for chemical and intermediate temperature-sensing applications. ACS Appl Mater Interfaces 10(49):42552–42563. https://doi.org/10.1021/acsami.8b11956

    Article  PubMed  CAS  Google Scholar 

  16. Jadhav P, Muhammad N, Bhuyar P, Krishnan S, Abd Razak AS, Zularisam A, Nasrullah M (2021) A review on the impact of conductive nanoparticles (cnps) in anaerobic digestion: applications and limitations. Environ Technol Innov 23:101526

  17. Garcia-Vidal FJ, Fernández-Domínguez AI, Martin-Moreno L, Zhang HC, Tang W, Peng R, Cui TJ (2022) Spoof surface plasmon photonics. Rev Mod Phys 94(2):025004

    Article  Google Scholar 

  18. Mittal S, Sharma T, Tiwari M (2021) Surface plasmon resonance based photonic crystal fiber biosensors: a review. Mater Today Proc 43:3071–3074

    Article  CAS  Google Scholar 

  19. Hutter E, Fendler JH (2004) Exploitation of localized surface plasmon resonance. Adv Mater 16(19):1685–1706

    Article  CAS  Google Scholar 

  20. Farooq S, de Araujo RE (2018) Engineering a localized surface plasmon resonance platform for molecular biosensing. Open J Appl Sci 8(3):126–139

    CAS  Google Scholar 

  21. Badilescu S, Raju D, Bathini S, Packirisamy M (2020) Gold nano-island platforms for localized surface plasmon resonance sensing: a short review. Molecules 25(20):4661

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Todorov R, Hristova-Vasileva T, Katrova V, Atanasova A (2023) Silver and gold containing compounds of p-block elements as perspective materials for uv plasmonics. ACS Omega 8(16):14321–14341

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Gurav DD, Jia YA, Ye J, Qian K (2019) Design of plasmonic nanomaterials for diagnostic spectrometry. Nanoscale Adv 1(2):459–469. https://doi.org/10.1039/C8NA00319J

    Article  PubMed  Google Scholar 

  24. Farooq S, Wali F, Zezell DM, de Araujo RE, Rativa D (2022b) Optimizing and quantifying gold nanospheres based on lspr label-free biosensor for dengue diagnosis. Polymers 14(8):1592

  25. Lee SA, Link S (2021) Chemical interface damping of surface plasmon resonances. Acc Chem Res 54(8):1950–1960

    Article  PubMed  CAS  Google Scholar 

  26. Jeon HB, Tsalu PV, Ha JW (2019) Shape effect on the refractive index sensitivity at localized surface plasmon resonance inflection points of single gold nanocubes with vertices. Sci Rep 9(1):13635

    Article  PubMed  PubMed Central  Google Scholar 

  27. Zhang J, Kolhatkar G, Ruediger A (2021) Localized surface plasmon resonance shift and its application in scanning near-field optical microscopy. J Mater Chem C 9(22):6960–6969

    Article  CAS  Google Scholar 

  28. Xu T, Geng Z (2021) Strategies to improve performances of lspr biosensing: structure, materials, and interface modification. Biosens Bioelectron 174:112850

  29. Hong YA, Ha JW (2022) Enhanced refractive index sensitivity of localized surface plasmon resonance inflection points in single hollow gold nanospheres with inner cavity. Sci Rep 12(1):6983

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Martín-Sánchez C, Sánchez-Iglesias A, Barreda-Argueso JA, Polian A, Liz-Marzán LM, Rodríguez F (2022) Behavior of au nanoparticles under pressure observed by in situ small-angle x-ray scattering. ACS Nano 17(1):743–751

    Article  PubMed  PubMed Central  Google Scholar 

  31. Chen Y, Ai B, Wong ZJ (2020) Soft optical metamaterials. Nano. Convergence 7:1–17

    Google Scholar 

  32. Katyal J et al (2021) Localized surface plasmon resonance and field enhancement of au, ag, al and cu nanoparticles having isotropic and anisotropic nanostructure. Mater Today Proc 44:5012–5017

    Article  CAS  Google Scholar 

  33. Guvenc CM, Balci FM, Sarisozen S, Polat N, Balci S (2020) Colloidal bimetallic nanorings for strong plasmon exciton coupling. J Phys Chem C 124(15):8334–8340

    Article  CAS  Google Scholar 

  34. Balci FM, Sarisozen S, Polat N, Guvenc CM, Karadeniz U, Tertemiz A, Balci S (2021) Laser assisted synthesis of anisotropic metal nanocrystals and strong light-matter coupling in decahedral bimetallic nanocrystals. Nanoscale Advances 3(6):1674–1681

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Do PQT, Huong VT, Phuong NTT, Nguyen TH, Ta HKT, Ju H, Phan TB, Phung VD, Tran NHT et al (2020) The highly sensitive determination of serotonin by using gold nanoparticles (au nps) with a localized surface plasmon resonance (lspr) absorption wavelength in the visible region. RSC Adv 10(51):30858–30869

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Dahlman CJ, Agrawal A, Staller CM, Adair J, Milliron DJ (2019) Anisotropic origins of localized surface plasmon resonance in n-type anatase tio2 nanocrystals. Chem Mater 31(2):502–511

    Article  CAS  Google Scholar 

  37. Yao M, Ning D, Lin X, Huang J, Huang S, Lin T, Zou B, Hong P, Liang Y (2023) Tunable surface plasmonic resonance and infrared self-focusing propagation in cuxs nanoparticle suspensions. Opt Commun 527

  38. Tanjaya NK, Kaur M, Nagao T, Ishii S (2022) Photothermal heating and heat transfer analysis of anodic aluminum oxide with high optical absorptance. Nanophotonics 11(14):3375–3381

    Article  CAS  Google Scholar 

  39. Cardozo O, Farooq S, Farias PM, Fraidenraich N, Stingl A, Araujo REd (2022) Zinc oxide nanodiffusers to enhance p3ht: pcbm organic solar cells performance. J Mater Sci Mater Electron 33(6):3225–3236

    Article  CAS  Google Scholar 

  40. Farooq S, Rativa D, de Araujo RE (2021) High performance gold dimeric nanorods for plasmonic molecular sensing. IEEE Sens J 21(12):13184–13191

    Article  CAS  Google Scholar 

  41. Piotto V, Litti L, Meneghetti M (2020) Synthesis and shape manipulation of anisotropic gold nanoparticles by laser ablation in solution. J Phys Chem C 124(8):4820–4826

    Article  CAS  Google Scholar 

  42. Bu Y, Huang R, Li Z, Zhang P, Zhang L, Yang Y, Liu Z, Guo K, Gao F (2021) Anisotropic truncated octahedral au with pt deposition on arris for localized surface plasmon resonance-enhanced photothermal and photodynamic therapy of osteosarcoma. ACS Appl Mater Interfaces 13(30):35328–35341

    Article  PubMed  CAS  Google Scholar 

  43. González-Rubio G, Scarabelli L, Guerrero-Martínez A, Liz-Marzán LM (2020) Surfactant-assisted symmetry breaking in colloidal gold nanocrystal growth. ChemNanoMat 6(5):698–707

    Article  Google Scholar 

  44. Farooq S, Nunes FD, de Araujo RE (2018c) Optical properties of silver nanoplates and perspectives for biomedical applications. Photonics Nanostruct Fundam Appl 31:160–167

  45. Martinez Castellano E, Tamayo-Arriola J, Montes Bajo M, Gonzalo A, Stanojević L, Ulloa JM, Klymov O, Yeste J, Agouram S, Muñoz E et al (2021) Self-assembled metal-oxide nanoparticles on gaas: infrared absorption enabled by localized surface plasmons. Nanophotonics 10(9):2509–2518

    Article  CAS  Google Scholar 

  46. Kasani S, Zheng P, Bright J, Wu N (2019) Tunable visible-light surface plasmon resonance of molybdenum oxide thin films fabricated by e-beam evaporation. ACS Appl Electron Mater 1(11):2389–2395

    Article  CAS  Google Scholar 

  47. Duque JS, Madrigal BM, Riascos H, Avila YP (2019) Colloidal metal oxide nanoparticles prepared by laser ablation technique and their antibacterial test. Colloids Interfaces 3(1):25

    Article  CAS  Google Scholar 

  48. Proenca M, Borges J, Rodrigues MS, Meira DI, Sampaio P, Dias JP, Pedrosa P, Martin N, Bundaleski N, Teodoro OM et al (2019) Nanocomposite thin films based on au-ag nanoparticles embedded in a cuo matrix for localized surface plasmon resonance sensing. Appl Surf Sci 484:152–168

    Article  CAS  Google Scholar 

  49. Chowdhury AD, Takemura K, Khorish IM, Nasrin F, Tun MMN, Morita K, Park EY (2020a) The detection and identification of dengue virus serotypes with quantum dot and aunp regulated localized surface plasmon resonance. Nanoscale Advances 2(2):699–709

  50. Son J, Choi D, Park M, Kim J, Jeong KS (2020) Transformation of colloidal quantum dot: from intraband transition to localized surface plasmon resonance. Nano Lett 20(7):4985–4992

    Article  PubMed  CAS  Google Scholar 

  51. Mousavi SM, Hashemi SA, Kalashgrani MY, Rahmanian V, Gholami A, Chiang WH, Lai CW (2022) Biomedical applications of an ultra-sensitive surface plasmon resonance biosensor based on smart mxene quantum dots (smqds). Biosensors 12(9):743

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Li H, Xu Q, Wang X, Liu W (2018) Ultrasensitive surface-enhanced raman spectroscopy detection based on amorphous molybdenum oxide quantum dots. Small 14(28):1801523

    Article  Google Scholar 

  53. Yakimchuk DV, Kaniukov EY, Lepeshov S, Bundyukova VD, Demyanov SE, Arzumanyanm GM, Doroshkevich NV, Mamatkulov KZ, Bochmann A, Presselt M, et al. (2019) Self-organized spatially separated silver 3d dendrites as efficient plasmonic nanostructures for surface-enhanced raman spectroscopy applications. J Appl Phys 126(23)

  54. Giordano MC, Tzschoppe M, Barelli M, Vogt J, Huck C, Canepa F, Pucci A, Buatier de Mongeot F (2020) Self-organized nanorod arrays for large-area surface-enhanced infrared absorption. ACS Appl Mater Interfaces 12(9):11155–11162

    Article  PubMed  CAS  Google Scholar 

  55. Germanicus RC, Bourlier Y, Notot V, Bérini B, Demange V, Berthe M, Boileau A, Euchin M, Dumont Y, Aureau D et al (2020) Three dimensional resistance mapping of self-organized sr3v2o8 nanorods on metallic perovskite srvo3 matrix. Appl Surf Sci 510:145522

    Article  CAS  Google Scholar 

  56. Tim B, Błaszkiewicz P, Kotkowiak M (2021) Recent advances in metallic nanoparticle assemblies for surface-enhanced spectroscopy. Int J Mol Sci 23(1):291

    Article  PubMed  PubMed Central  Google Scholar 

  57. Alharbi R, Irannejad M, Yavuz M (2019) A short review on the role of the metal-graphene hybrid nanostructure in promoting the localized surface plasmon resonance sensor performance. Sensors 19(4):862

    Article  PubMed  PubMed Central  Google Scholar 

  58. Liu C, Chen H, Wang S, Liu Q, Jiang YG, Zhang DW, Liu M, Zhou P (2020) Two-dimensional materials for next-generation computing technologies. Nat Nanotechnol 15(7):545–557

    Article  PubMed  CAS  Google Scholar 

  59. Ghopry SA, Alamri MA, Goul R, Sakidja R, Wu JZ (2019) Extraordinary sensitivity of surface–enhanced Raman spectroscopy of molecules on MoS 2 (WS 2) nanodomes/graphene Van der Waals heterostructure substrates. Adv Opt Mater 7(8):1801249. https://doi.org/10.1002/adom.201801249

    Article  CAS  Google Scholar 

  60. Rohaizad N, Mayorga-Martinez CC, Fojt M, Latiff NM, Pumera M (2021) Two-dimensional materials in biomedical, biosensing and sensing applications. Chem Soc Rev 50(1):619–657

    Article  PubMed  CAS  Google Scholar 

  61. Fernández-Arias M, Boutinguiza M, del Val J, Riveiro A, Rodríguez D, Arias-González F, Gil J, Pou J (2020) Fabrication and deposition of copper and copper oxide nanoparticles by laser ablation in open air. Nanomaterials 10(2):300

    Article  PubMed  PubMed Central  Google Scholar 

  62. Machado TM, Peixoto LPF, Andrade GF, Silva MA (2022) Copper nanoparticles-containing tellurite glasses: an efficient sers substrate. Mater Chem Phys 278:125597

  63. Popok VN, Novikov SM, Lebedinskij YY, Markeev AM, Andreev AA, Trunkin IN, Arsenin AV, Volkov VS (2021) Gas-aggregated copper nanoparticles with long-term plasmon resonance stability. Plasmonics 16:333–340

    Article  CAS  Google Scholar 

  64. Dong C, Feng W, Xu W, Yu L, Xiang H, Chen Y, Zhou J (2020) The coppery age: copper (cu)-involved nanotheranostics. Adv Sci 7(21):2001549

    Article  CAS  Google Scholar 

  65. Ballesteros CA, Correa DS, Zucolotto V (2020) Polycaprolactone nanofiber mats decorated with photoresponsive nanogels and silver nanoparticles: slow release for antibacterial control. Mater Sci Eng C 107

  66. Amirjani A, Firouzi F, Haghshenas DF (2020) Predicting the size of silver nanoparticles from their optical properties. Plasmonics 15:1077–1082

    Article  CAS  Google Scholar 

  67. Krishnan PD, Banas D, Durai RD, Kabanov D, Hosnedlova B, Kepinska M, Fernandez C, Ruttkay-Nedecky B, Nguyen HV, Farid A et al (2020) Silver nanomaterials for wound dressing applications. Pharmaceutics 12(9):821

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Lee JH, Cho HY, Choi HK, Lee JY, Choi JW (2018) Application of gold nanoparticle to plasmonic biosensors. Int J Mol Sci 19(7):2021

  69. He MQ, Yu YL, Wang JH (2020) Biomolecule-tailored assembly and morphology of gold nanoparticles for lspr applications. Nano Today 35:101005

    Article  CAS  Google Scholar 

  70. Pedrosa TdL, Farooq S, de Araujo RE (2022) Selecting high-performance gold nanorods for photothermal conversion. Nanomaterials 12(23):4188

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Wang Z, Ren X, Wang D, Guan L, Li X, Zhao Y, Liu A, He L, Wang T, Zvyagin AV et al (2023) Novel strategies for tumor radiosensitization mediated by multifunctional gold-based nanomaterials. Biomater Sci 11:1116–1136

    Article  PubMed  CAS  Google Scholar 

  72. Souto DE, Volpe J, Gonçalves CdC, Ramos CH, Kubota LT (2019a) A brief review on the strategy of developing spr-based biosensors for application to the diagnosis of neglected tropical diseases. Talanta 205:120122

  73. Deroco PB, Junior DW, Kubota LT (2021) Recent advances in point-of-care biosensors for the diagnosis of neglected tropical diseases. Sens Actuators, B Chem 349:130821

    Article  CAS  Google Scholar 

  74. Xifre-Perez E, Ferre-Borrull J, Marsal LF (2022) Oligonucleotic probes and immunosensors based on nanoporous anodic alumina for screening of diseases. Adv Mater Technol 7(9):2101591

    Article  CAS  Google Scholar 

  75. Souto DE, Volpe J, Gonçalves CdC, Ramos CH, Kubota LT (2019b) A brief review on the strategy of developing spr-based biosensors for application to the diagnosis of neglected tropical diseases. Talanta 205:120122

  76. de Freitas Borges PA, Fiel WA, Vasconcellos VA, de Faria RAD (2021) Current progresses in the development of biosensors for the diagnosis of neglected tropical diseases. Systematic Bioscience and Engineering pp 39–49

  77. Samuel VR, Rao KJ (2022) A review on label free biosensors. Biosens Bioelectron: X p 100216

  78. Zheng Y, Bian S, Sun J, Wen L, Rong G, Sawan M (2022) Label-free lspr-vertical microcavity biosensor for on-site sars-cov-2 detection. Biosensors 12(3):151

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Taghavi A, Rahbarizadeh F, Abbasian S, Moshaii A (2020) Label-free lspr prostate-specific antigen immune-sensor based on glad-fabricated silver nano-columns. Plasmonics 15:753–760

    Article  CAS  Google Scholar 

  80. Erdem Ö, Saylan Y, Cihangir N, Denizli A (2019) Molecularly imprinted nanoparticles based plasmonic sensors for real-time enterococcus faecalis detection. Biosens Bioelectron 126:608–614

    Article  PubMed  CAS  Google Scholar 

  81. Zhu S, Xie Z, Chen Y, Liu S, Kwan YW, Zeng S, Yuan W, Ho HP (2022) Real-time detection of circulating tumor cells in bloodstream using plasmonic fiber sensors. Biosensors 12(11):968

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Kim HM, Park JH, Jeong DH, Lee HY, Lee SK (2018a) Real-time detection of prostate-specific antigens using a highly reliable fiber-optic localized surface plasmon resonance sensor combined with micro fluidic channel. Sens Actuators B 273:891–898

  83. Roether J, Chu KY, Willenbacher N, Shen AQ, Bhalla N (2019) Real-time monitoring of dna immobilization and detection of dna polymerase activity by a microfluidic nanoplasmonic platform. Biosens Bioelectron 142:111528

    Article  PubMed  CAS  Google Scholar 

  84. Chen H, Liu K, Li Z, Wang P (2019) Point of care testing for infectious diseases. Clin Chim Acta 493:138–147

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Hoque S, Somasundaram L, Samy R, Dawane A, Sen A (2021) Localized surface plasmon resonance sensors for biomarker detection with on-chip microfluidic devices in point-of-care diagnostics. In: Advanced Micro-and Nano-Manufacturing Technologies: Applications in Biochemical and Biomedical Engineering, Springer, pp 199–223

  86. Zhu L, Ling J, Zhu Z, Tian T, Song Y, Yang C (2021) Selection and applications of functional nucleic acids for infectious disease detection and prevention. Anal Bioanal Chem 413:4563–4579

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Jampasa S, Kreangkaiwal C, Kalcher K, Waiwinya W, Techawiwattanaboon T, Songumpai N, Sueyanyongsiri P, Pattanasombatsakul K, Techapornroong M, Benjamanukul S et al (2022) Resistance-based lateral flow immunosensor with a nfc-enabled smartphone for rapid diagnosis of leptospirosis in clinical samples. Anal Chem 94(42):14583–14592

    Article  PubMed  CAS  Google Scholar 

  88. Figueredo F, Stolowicz F, Vojnov A, Coltro WK, Larocca L, Carrillo C, Cortón E (2021) Towards a versatile and economic Chagas disease point-of-care testing system, by integrating loop-mediated isothermal amplification and contactless/label-free conductivity detection. PLoS Negl Trop Dis 15(5)

  89. Prado IC, Mendes VG, Souza AL, Dutra RF, De-Simone SG (2018) Electrochemical immunosensor for differential diagnostic of wuchereria bancrofti using a synthetic peptide. Biosens Bioelectron 113:9–15

    Article  PubMed  CAS  Google Scholar 

  90. Awan M, Rauf S, Abbas A, Nawaz MH, Yang C, Shahid SA, Amin N, Hayat A (2020) A sandwich electrochemical immunosensor based on antibody functionalized-silver nanoparticles (ab-ag nps) for the detection of dengue biomarker protein ns1. J Mol Liq 317:114014

    Article  CAS  Google Scholar 

  91. Lee JS, Kim J, Shin H, Min DH (2020) Graphene oxide-based molecular diagnostic biosensor for simultaneous detection of zika and dengue viruses. 2D Materials 7(4):044001

  92. Booth M (2018) Climate change and the neglected tropical diseases. Adv Parasitol 100:39–126

    Article  PubMed  PubMed Central  Google Scholar 

  93. Gutman JR, Lucchi NW, Cantey PT, Steinhardt LC, Samuels AM, Kamb ML, Kapella BK, McElroy PD, Udhayakumar V, Lindblade KA (2020) Malaria and parasitic neglected tropical diseases: potential syndemics with COVID-19? Am J Trop Med Hyg 103(2):572

    PubMed  PubMed Central  Google Scholar 

  94. Molyneux DH, Aboe A, Isiyaku S, Bush S (2020) COVID-19 and neglected tropical diseases in Africa: impacts, interactions, consequences. Int Health 12(5):367–372

  95. da Conceição JR, Lopes CPG, Ferreira EI, Epiphanio S, Giarolla J (2022) Neglected tropical diseases and systemic racism especially in Brazil: from socio-economic aspects to the development of new drugs. Acta Trop 235

  96. Bryson JM, Bishop-Williams KE, Berrang-Ford L, Nunez EC, Lwasa S, Namanya DB, Harper SL, Team IHATCCR, et al. (2020) Neglected tropical diseases in the context of climate change in east Africa: a systematic scoping review. Am J Trop Med Hyg 102(6):1443

  97. Morgan J, Strode C, Salcedo-Sora JE (2021) Climatic and socio-economic factors supporting the co-circulation of dengue, zika and chikungunya in three different ecosystems in colombia. PLoS Negl Trop Dis 15(3):e0009259

    Article  PubMed  PubMed Central  Google Scholar 

  98. Telle O, Nikolay B, Kumar V, Benkimoun S, Pal R, Nagpal B, Paul RE (2021) Social and environmental risk factors for dengue in Delhi city: a retrospective study. PLoS Negl Trop Dis 15(2)

  99. Lima D, Hacke ACM, Ulmer B, Kuss S (2021) Electrochemical sensing of trypanosome-and flavivirus-related neglected tropical diseases. Curr Opin Electrochem 30:100838

    Article  CAS  Google Scholar 

  100. Yang H, Ledesma-Amaro R, Gao H, Ren Y, Deng R (2023a) Crispr-based biosensors for pathogenic biosafety. Biosensors and Bioelectronics p 115189

  101. Zakiyyah SN, Ibrahim AU, Babiker MS, Gaffar S, Ozsoz M, Zein MIH, Hartati YW (2022) Detection of tropical diseases caused by mosquitoes using crispr-based biosensors. Tropical Medicine and Infectious Disease 7(10):309

    Article  PubMed  PubMed Central  Google Scholar 

  102. Castro-Camus E, Koch M, Mittleman DM (2022) Towards the development of thz-sensors for the detection of African trypanosomes. Appl Phys B 128(1):12

    Article  CAS  Google Scholar 

  103. Knieß R, Wagner CB, Ulrich Göringer H, Mueh M, Damm C, Sawallich S, Chmielak B, Plachetka U, Lemme M (2018) Towards the development of thz-sensors for the detection of African trypanosomes. Frequenz 72(3–4):101–111

    Article  Google Scholar 

  104. Kim DM, Park JS, Jung SW, Yeom J, Yoo SM (2021b) Biosensing applications using nanostructure-based localized surface plasmon resonance sensors. Sensors 21(9):3191

  105. Lim SG, Jo S, Lee JH, Kwona OS (2022) Review for device compositions of localized surface plasmon resonance sensors. Appl Sci Converg Technol 31(2):35–39

    Article  Google Scholar 

  106. Takemura K (2021) Surface plasmon resonance (spr)-and localized spr (lspr)-based virus sensing systems: optical vibration of nano-and micro-metallic materials for the development of next-generation virus detection technology. Biosensors 11(8):250

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Ritchie RH (1957) Plasma losses by fast electrons in thin films. Phys Rev 106(5):874–881. https://doi.org/10.1103/PhysRev.106.874

    Article  CAS  Google Scholar 

  108. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6(12):4370–4379. https://doi.org/10.1103/PhysRevB.6.4370

    Article  CAS  Google Scholar 

  109. Jha R, Singh RK (2023) Tightly focused linearly and radially polarized beam effect on the lspr peak with varying particle size. Phys Scr 98(11):115523

  110. Belina E, Mankov V, Kisov H, Dimitrova T, Dyankov G (2022) Spectral readout of spr excited in diffraction grating. In: Journal of Physics: Conference Series, IOP Publishing, vol 2240, p 012015

  111. Raghuwanshi SK, Pandey PS (2022) A numerical study of different metal and prism choices in the surface plasmon resonance biosensor chip for human blood group identification. IEEE Trans Nanobiosci 22(2):292–300

    Article  Google Scholar 

  112. Kretschmann E, Raether H (1968) Notizen: radiative decay of non radiative surface plasmons excited by light. Zeitschrift für Naturforschung A 23(12):2135–2136. https://doi.org/10.1515/zna-1968-1247

    Article  CAS  Google Scholar 

  113. Otto A (1968) Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Zeitschrift für Physik A Hadrons and nuclei 216(4):398–410. https://doi.org/10.1007/BF01391532

    Article  CAS  Google Scholar 

  114. Maier SA (2007) Plasmonics: fundamentals and applications. Springer Science & Business Media

  115. Grasseschi D, dos Santos D (2020) Nanomateriais plasmônicos: parte i. fundamentos da espectroscopia de nanopartículas e sua relação com o efeito sers. Química Nova 43(10):1463–1481. https://doi.org/10.21577/0100-4042.20170621

  116. Ugwuoke LC, Mančal T, Krüger TP (2020) Localized surface plasmon resonances of simple tunable plasmonic nanostructures. Plasmonics 15:189–200

    Article  CAS  Google Scholar 

  117. Rahaman M, Aslam MA, He L, Madeira TI, Zahn DR (2021) Plasmonic hot electron induced layer dependent anomalous fröhlich interaction in inse. Commun Phys 4(1):172

    Article  CAS  Google Scholar 

  118. Huang H, Lai J, Lu J, Li Z (2021) Performance enhancement of zno ultraviolet detector by localized surface plasmon resonance of al nanoparticles. Appl Phys A 127:1–7

    Article  Google Scholar 

  119. Kawamura G, Matsuda A (2022) Nanomaterials for localized surface plasmon resonance-related optical functionalities. In: Progress in Nanophotonics 7, Springer, pp 37–70

  120. Matsko N (2020) Formation of normal surface plasmon modes in small sodium nanoparticles. Phys Chem Chem Phys 22(23):13285–13291

    Article  PubMed  CAS  Google Scholar 

  121. Zheng J, Liao F, Wu S, Jones G, Chen TY, Fellowes J, Sudmeier T, McPherson IJ, Wilkinson I, Tsang SCE (2019) Efficient non-dissociative activation of dinitrogen to ammonia over lithium-promoted ruthenium nanoparticles at low pressure. Angew Chem Int Ed 58(48):17335–17341

    Article  CAS  Google Scholar 

  122. Catalán-Gómez S, Bran C, Vázquez M, Vázquez L, Pau J, Redondo-Cubero A (2020) Plasmonic coupling in closed-packed ordered gallium nanoparticles. Sci Rep 10(1):4187

    Article  PubMed  PubMed Central  Google Scholar 

  123. Fonsaca JE, Moreira MP, Farooq S, de Araujo RE, de Matos CJ, Grasseschi D (2023) Surface plasmon resonance platforms for chemical and bio-sensing. 316–353

  124. Irfan I, Golovynskyi S, Bosi M, Seravalli L, Yeshchenko OA, Xue B, Dong D, Lin Y, Qiu R, Li B et al (2021) Enhancement of raman scattering and exciton/trion photoluminescence of monolayer and few-layer mos2 by ag nanoprisms and nanoparticles: shape and size effects. J Phys Chem C 125(7):4119–4132

    Article  CAS  Google Scholar 

  125. Hossain MK (2020) Nanoassembly of gold nanoparticles: an active substrate for size-dependent surface-enhanced Raman scattering. Spectrochim Acta Part A Mol Biomol Spectrosc 242

  126. Terekhov P, Shamkhi H, Gurvitz E, Baryshnikova K, Evlyukhin A, Shalin A, Karabchevsky A (2019) Broadband forward scattering from dielectric cubic nanoantenna in lossless media. Opt Express 27(8):10924–10935

    Article  PubMed  CAS  Google Scholar 

  127. Farooq S (2018) Optical properties of metallic nanoparticles and perspectives for biomedical applications. https://repositorio.ufpe.br/handle/123456789/32614

  128. Wang L, Hasanzadeh Kafshgari M, Meunier M (2020) Optical properties and applications of plasmonic-metal nanoparticles. Adv Func Mater 30(51):2005400

    Article  CAS  Google Scholar 

  129. SS dos Santos P, MMM de Almeida J, Pastoriza-Santos I, CC Coelho L (2021) Advances in plasmonic sensing at the nir–a review. Sensors 21(6):2111

  130. Kim KY (2012) Plasmonics: principles and applications. BoD–Books on Demand, pp 283–312

  131. Seo MJ, Kim GW, Tsalu PV, Moon SW, Ha JW (2020) Role of chemical interface damping for tuning chemical enhancement in resonance surface-enhanced Raman scattering of plasmonic gold nanorods. Nanoscale Horizons 5(2):345–349

    Article  CAS  Google Scholar 

  132. Ahmad Mohamed Ali R, Mita D, Espulgar W, Saito M, Nishide M, Takamatsu H, Yoshikawa H, Tamiya E (2019) Single cell analysis of neutrophils nets by microscopic lspr imaging system. Micromachines 11(1):52

    Article  PubMed  PubMed Central  Google Scholar 

  133. Jakkiriya N, Durgachalam M, Rajendiren N, Rathinasamy T, Sengeny P (2023) Metal and media refractive index dependent surface plasmon resonance of single and bimetallic core-shell metal nanocomposites. In: AIP Conference Proceedings, AIP Publishing, vol 2861

  134. Farooq S, Neves WW, Pandoli O, Del Rosso T, de Lima LM, Dutra RF, de Araujo RE (2018b) Engineering a plasmonic sensing platform for Candida albicans antigen identification. J Nanophotonics 12(3):033003

  135. Muldarisnur M, Fridayanti N, Oktorina E, Zeni E, Elvaswer E, Syukri S (2019) Effect of nanoparticle geometry on sensitivity of metal nanoparticle based sensor. In: IOP Conference Series: Materials Science and Engineering, IOP Publishing, vol 578, p 012036

  136. Mahmood HZ, Jilani A, Farooq S, Javed Y, Jamil Y, Iqbal J, Ullah S, Wageh S (2021) Plasmon-based label-free biosensor using gold nanosphere for dengue detection. Curr Comput-Aided Drug Des 11(11):1340

    CAS  Google Scholar 

  137. Chen H, Kou X, Yang Z, Ni W, Wang J (2008) Shape-and size-dependent refractive index sensitivity of gold nanoparticles. Langmuir 24(10):5233–5237

    Article  PubMed  CAS  Google Scholar 

  138. Sun Y, Xia Y (2002) Increased sensitivity of surface plasmon resonance of gold nanoshells compared to that of gold solid colloids in response to environmental changes. Anal Chem 74(20):5297–5305

    Article  PubMed  CAS  Google Scholar 

  139. Underwood S, Mulvaney P (1994) Effect of the solution refractive index on the color of gold colloids. Langmuir 10(10):3427–3430

    Article  CAS  Google Scholar 

  140. Farooq S, Rativa D, de Araujo RE (2019) Optimizing the sensing performance of sio 2-au nanoshells. Plasmonics 14(6):1519–1526

    Article  CAS  Google Scholar 

  141. Wu J, Li M, Tang H, Su J, He M, Chen G, Guan L, Tian J (2019) Portable paper sensors for the detection of heavy metals based on light transmission-improved quantification of colorimetric assays. Analyst 144(21):6382–6390

    Article  PubMed  CAS  Google Scholar 

  142. Farooq S, Mahmood HZ, Rativa D, Bouchonneau N, Lins E, Fontana J, de Araujo RE (2018a) Optimizing gold nanorods dimer structure for sensing platform. In: 2018 SBFoton International Optics and Photonics Conference (SBFoton IOPC), IEEE, pp 1–4

  143. Jung LS, Campbell CT, Chinowsky TM, Mar MN, Yee SS (1998) Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films. Langmuir 14(19):5636–5648

    Article  CAS  Google Scholar 

  144. Nehl CL, Liao H, Hafner JH (2006) Optical properties of star-shaped gold nanoparticles. Nano Lett 6(4):683–688

    Article  PubMed  CAS  Google Scholar 

  145. Khalavka Y, Becker J, Sonnichsen C (2009) Synthesis of rod-shaped gold nanorattles with improved plasmon sensitivity and catalytic activity. J Am Chem Soc 131(5):1871–1875

    Article  PubMed  CAS  Google Scholar 

  146. Bukasov R, Shumaker-Parry JS (2007) Highly tunable infrared extinction properties of gold nanocrescents. Nano Lett 7(5):1113–1118

    Article  PubMed  CAS  Google Scholar 

  147. Burgin J, Liu M, Guyot-Sionnest P (2008) Dielectric sensing with deposited gold bipyramids. The Journal of Physical Chemistry C 112(49):19279–19282

    Article  CAS  Google Scholar 

  148. Verma V, Kala D, Gupta S, Kumar H, Kaushal A, Kuča K, Cruz-Martins N, Kumar D (2021) Leptospira interrogans outer membrane protein-based nanohybrid sensor for the diagnosis of leptospirosis. Sensors 21(7):2552

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Sapna K, Sonia J, Shim YB, Arun A, Prasad KS (2022) Au nanoparticle-based disposable electrochemical sensor for detection of leptospirosis in clinical samples. ACS Applied Nano Materials 5(9):12454–12463

    Article  CAS  Google Scholar 

  150. Mancini RS, Sabaine AE, Castro CE, Carnielli JB, Dietze R, de Oliveira VL, Lanfredi AJ, Kubota LT, Mamián-López MB, Alves WA (2022) Development and validation of a sers-based serological test combined with pls-da method for leishmaniasis detection. ACS Appl Electron Mater 4(8):3997–4006

    Article  CAS  Google Scholar 

  151. Martins BR, Barbosa YO, Andrade CM, Pereira LQ, Simão GF, de Oliveira CJ, Correia D, Oliveira RT Jr, da Silva MV, Silva AC et al (2020) Development of an electrochemical immunosensor for specific detection of visceral leishmaniasis using gold-modified screen-printed carbon electrodes. Biosensors 10(8):81

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Sattarahmady N, Movahedpour A, Heli H, Hatam G (2016) Gold nanoparticles-based biosensing of leishmania major kdna genome: visual and spectrophotometric detections. Sens Actuators, B Chem 235:723–731

    Article  CAS  Google Scholar 

  153. Ahmad A, Wei Y, Syed F, Khan S, Khan GM, Tahir K, Khan AU, Raza M, Khan FU, Yuan Q (2016) Isatis tinctoria mediated synthesis of amphotericin b-bound silver nanoparticles with enhanced photoinduced antileishmanial activity: a novel green approach. J Photochem Photobiol, B 161:17–24

    Article  PubMed  CAS  Google Scholar 

  154. Moradi M, Sattarahmady N, Rahi A, Hatam G, Sorkhabadi SR, Heli H (2016) A label-free, pcr-free and signal-on electrochemical dna biosensor for leishmania major based on gold nanoleaves. Talanta 161:48–53

    Article  PubMed  CAS  Google Scholar 

  155. Garcia MFdS, Andrade CA, de Melo CP, Gomes DS, Silva LG, Dias RV, Balbino VQ, Oliveira MD (2016) Impedimetric sensor for leishmania infantum genome based on gold nanoparticles dispersed in polyaniline matrix. J Chem Technol Biotechnol 91(11):2810–2816

    Article  CAS  Google Scholar 

  156. Nazari-Vanani R, Sattarahmady N, Yadegari H, Delshadi N, Hatam G, Heli H (2018) Electrochemical quantitation of leishmania infantum based on detection of its kdna genome and transduction of non-spherical gold nanoparticles. Anal Chim Acta 1041:40–49

    Article  PubMed  CAS  Google Scholar 

  157. Jeon W, Lee S, Manjunatha D, Ban C (2013) A colorimetric aptasensor for the diagnosis of malaria based on cationic polymers and gold nanoparticles. Anal Biochem 439(1):11–16

    Article  PubMed  CAS  Google Scholar 

  158. Della Ventura B, Banchelli M, Funari R, Illiano A, De Angelis M, Taroni P, Amoresano A, Matteini P, Velotta R (2019) Biosensor surface functionalization by a simple photochemical immobilization of antibodies: experimental characterization by mass spectrometry and surface enhanced raman spectroscopy. Analyst 144(23):6871–6880

    Article  PubMed  CAS  Google Scholar 

  159. Minopoli A, Della Ventura B, Lenyk B, Gentile F, Tanner JA, Offenhäusser A, Mayer D, Velotta R (2020) Ultrasensitive antibody-aptamer plasmonic biosensor for malaria biomarker detection in whole blood. Nat Commun 11(1):6134

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Brangel P, Sobarzo A, Parolo C, Miller BS, Howes PD, Gelkop S, Lutwama JJ, Dye JM, McKendry RA, Lobel L et al (2018) A serological point-of-care test for the detection of igg antibodies against Ebola virus in human survivors. ACS Nano 12(1):63–73

    Article  PubMed  CAS  Google Scholar 

  161. Zang F, Su Z, Zhou L, Konduru K, Kaplan G, Chou SY (2019) Ultrasensitive Ebola virus antigen sensing via 3d nanoantenna arrays. Adv Mater 31(30):1902331

    Article  Google Scholar 

  162. Chowdhury AD, Takemura K, Khorish IM, Nasrin F, Tun MMN, Morita K, Park EY (2020b) The detection and identification of dengue virus serotypes with quantum dot and aunp regulated localized surface plasmon resonance. Nanoscale Advances 2(2):699–709

  163. Dutta Chowdhury A, Ganganboina AB, Nasrin F, Takemura K, Ra Doong, Utomo DIS, Lee J, Khoris IM, Park EY (2018) Femtomolar detection of dengue virus dna with serotype identification ability. Anal Chem 90(21):12464–12474

    Article  PubMed  CAS  Google Scholar 

  164. Camara AR, Gouvêa PM, Dias ACM, Braga AM, Dutra RF, de Araujo RE, Carvalho IC (2013) Dengue immunoassay with an lspr fiber optic sensor. Opt Express 21(22):27023–27031

    Article  PubMed  Google Scholar 

  165. Dutra RF, Silva AC, Saade J, Guedes MIF, Cordeiro MT (2018) A carbon ink screen-printed immunoelectrode for dengue virus ns1 protein detection based on photosynthesized amine gold nanoparticles. J Electron Sens 1:1–12

    Google Scholar 

  166. Nascimento HP, Oliveira MD, de Melo CP, Silva GJ, Cordeiro MT, Andrade CA (2011) An impedimetric biosensor for detection of dengue serotype at picomolar concentration based on gold nanoparticles-polyaniline hybrid composites. Colloids Surf, B 86(2):414–419

    Article  CAS  Google Scholar 

  167. Chen SH, Chuang YC, Lu YC, Lin HC, Yang YL, Lin CS (2009) A method of layer-by-layer gold nanoparticle hybridization in a quartz crystal microbalance dna sensing system used to detect dengue virus. Nanotechnology 20(21):215501

    Article  PubMed  Google Scholar 

  168. Tung YT, Wu MF, Wang GJ, Hsieh SL (2014) Nanostructured electrochemical biosensor for th0065 detection of the weak binding between the dengue virus and the clec5a receptor. Nanomedicine: Nanotechnology, Biology and Medicine 10(6):1335–1341

  169. Luna DM, Avelino KY, Cordeiro MT, Andrade CA, Oliveira MD (2015) Electrochemical immunosensor for dengue virus serotypes based on 4-mercaptobenzoic acid modified gold nanoparticles on self-assembled cysteine monolayers. Sens Actuators, B Chem 220:565–572

    Article  CAS  Google Scholar 

  170. Neves WW, Dutra RF, de Araujo RE, Pandoli O, del Rosso T, Siqueira CG, de Lima LM, Pinheiro J (2015) Development of a localized surface plasmon resonance platform for Candida albicans antigen identification. In: 2015 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC), IEEE, pp 1–4

  171. Zhou B, Li G, Wu M, Zhou Z, Cai X, Cai J, Zhou J (2022) Monitoring the adhesion and inhibitory activity of Candida albicans on poly-l-lysine modified gold nano-match head arrays. Adv Mater Interfaces 9(16):2102590

    Article  Google Scholar 

  172. Cajigas S, Alzate D, Orozco J (2020) Gold nanoparticle/dna-based nanobioconjugate for electrochemical detection of zika virus. Microchim Acta 187:1–10

    Article  Google Scholar 

  173. Adegoke O, Morita M, Kato T, Ito M, Suzuki T, Park EY (2017) Localized surface plasmon resonance-mediated fluorescence signals in plasmonic nanoparticle-quantum dot hybrids for ultrasensitive zika virus rna detection via hairpin hybridization assays. Biosens Bioelectron 94:513–522

    Article  PubMed  CAS  Google Scholar 

  174. Takemura K, Adegoke O, Suzuki T, Park EY (2019) A localized surface plasmon resonance-amplified immunofluorescence biosensor for ultrasensitive and rapid detection of nonstructural protein 1 of zika virus. PLoS ONE 14(1):e0211517

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  175. Steinmetz M, Lima D, Viana AG, Fujiwara ST, Pessôa CA, Etto RM, Wohnrath K (2019) A sensitive label-free impedimetric dna biosensor based on silsesquioxane-functionalized gold nanoparticles for zika virus detection. Biosens Bioelectron 141:111351

    Article  PubMed  CAS  Google Scholar 

  176. Camacho SA, Sobral-Filho RG, Aoki PHB, Constantino CJL, Brolo AG (2018) Zika immunoassay based on surface-enhanced Raman scattering nanoprobes. ACS Sensors 3(3):587–594

    Article  PubMed  CAS  Google Scholar 

  177. Kaushik A, Yndart A, Kumar S, Jayant RD, Vashist A, Brown AN, Li CZ, Nair M (2018) A sensitive electrochemical immunosensor for label-free detection of zika-virus protein. Sci Rep 8(1):9700

    Article  PubMed  PubMed Central  Google Scholar 

  178. Santos GS, Andrade CA, Bruscky IS, Wanderley LB, Melo FL, Oliveira MD (2017) Impedimetric nanostructured genosensor for detection of schistosomiasis in cerebrospinal fluid and serum samples. J Pharm Biomed Anal 137:163–169

    Article  PubMed  CAS  Google Scholar 

  179. Santos GS, Caldas RG, Melo FL, Bruscky IS, Silva MA, Wanderley LB, Andrade CA, Oliveira MD (2019) Label-free nanostructured biosensor for schistosoma mansoni detection in complex biological fluids. Talanta 204:395–401

    Article  PubMed  CAS  Google Scholar 

  180. Barreto-Duarte B, Araújo-Pereira M, Miguez-Pinto JP, Ferreira IB, Menezes RC, Rosier GL, Vinhaes CL, Maggitti-Bezerril M, Villalva-Serra K, Andrade BB (2022) Grand challenges in major tropical diseases. Front Trop Dis 3:1037913

    Article  Google Scholar 

  181. Bharadwaj M, Bengtson M, Golverdingen M, Waling L, Dekker C (2021) Diagnosing point-of-care diagnostics for neglected tropical diseases. PLoS Negl Trop Dis 15(6):e0009405

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  182. Bennuru S, O’Connell EM, Drame PM, Nutman TB (2018) Mining filarial genomes for diagnostic and therapeutic targets. Trends Parasitol 34(1):80–90

    Article  PubMed  CAS  Google Scholar 

  183. Fischer C, Jo WK, Haage V, Moreira-Soto A, de Oliveira Filho EF, Drexler JF (2021) Challenges towards serologic diagnostics of emerging arboviruses. Clin Microbiol Infect 27(9):1221–1229

    Article  PubMed  CAS  Google Scholar 

  184. Yang H, Ledesma-Amaro R, Gao H, Ren Y, Deng R (2023b) Crispr-based biosensors for pathogenic biosafety. Biosensors and Bioelectronics p 115189

  185. Li Y, Man S, Ye S, Liu G, Ma L (2022) Crispr-cas-based detection for food safety problems: current status, challenges, and opportunities. Compr Rev Food Sci Food Saf 21(4):3770–3798

    Article  PubMed  CAS  Google Scholar 

  186. Souto DE, Volpe J, Gonçalves CdC, Ramos CH, Kubota LT (2019c) A brief review on the strategy of developing spr-based biosensors for application to the diagnosis of neglected tropical diseases. Talanta 205:120122

  187. Wright WF, Simner PJ, Carroll KC, Auwaerter PG (2022) Progress report: next-generation sequencing, multiplex polymerase chain reaction, and broad-range molecular assays as diagnostic tools for fever of unknown origin investigations in adults. Clin Infect Dis 74(5):924–932

    Article  PubMed  CAS  Google Scholar 

  188. Menon S, Mathew MR, Sam S, Keerthi K, Kumar KG (2020) Recent advances and challenges in electrochemical biosensors for emerging and re-emerging infectious diseases. J Electroanal Chem 878:114596

    Article  CAS  Google Scholar 

  189. Yang SM, Lv S, Zhang W, Cui Y (2022) Microfluidic point-of-care (poc) devices in early diagnosis: a review of opportunities and challenges. Sensors 22(4):1620

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  190. Desai AN, Kraemer MU, Bhatia S, Cori A, Nouvellet P, Herringer M, Cohn EL, Carrion M, Brownstein JS, Madoff LC et al (2019) Real-time epidemic forecasting: challenges and opportunities. Health Security 17(4):268–275

    Article  PubMed  PubMed Central  Google Scholar 

  191. Doiron B, Mota M, Wells MP, Bower R, Mihai A, Li Y, Cohen LF, Alford NM, Petrov PK, Oulton RF, Maier SA (2019) Quantifying figures of merit for localized surface plasmon resonance applications: a materials survey. ACS Photonics 6(2):240–259. https://doi.org/10.1021/acsphotonics.8b01369

    Article  CAS  Google Scholar 

  192. Ha M, Kim JH, You M, Li Q, Fan C, Nam JM (2019) Multicomponent plasmonic nanoparticles: from heterostructured nanoparticles to colloidal composite nanostructures. Chem Rev 119(24):12208–12278. https://doi.org/10.1021/acs.chemrev.9b00234

    Article  PubMed  CAS  Google Scholar 

  193. Mayer KM, Hafner JH (2011) Localized surface plasmon resonance sensors. Chem Rev 111(6):3828–57. https://doi.org/10.1021/cr100313v

    Article  PubMed  CAS  Google Scholar 

  194. Cortie MB, McDonagh AM (2011) Synthesis and optical properties of hybrid and alloy plasmonic nanoparticles. Chem Rev 111(6):3713–35. https://doi.org/10.1021/cr1002529

    Article  PubMed  CAS  Google Scholar 

  195. Thanh NTK, Maclean N, Mahiddine S (2014) Mechanisms of nucleation and growth of nanoparticles in solution. Chem Rev 114(15):7610–7630. https://doi.org/10.1021/cr400544s

    Article  PubMed  CAS  Google Scholar 

  196. Toma HE, Zamarion VM, Toma SH, Araki K (2010) The coordination chemistry at gold nanoparticles. J Braz Chem Soc 21(7):1158–1176

    Article  CAS  Google Scholar 

  197. Huang CC, Chang HT (2006) Selective gold-nanoparticle-based “turn-on’’ fluorescent sensors for detection of mercury(II) in aqueous solution. Anal Chem 78(24):8332–8

    Article  PubMed  CAS  Google Scholar 

  198. Vianna PG, Grasseschi D, Costa GKB, Carvalho ICS, Domingues SH, Fontana J, de Matos CJS (2016) Graphene oxide/gold nanorod nanocomposite for stable surface-enhanced Raman spectroscopy. ACS Photonics 3(6):1027–1035. https://doi.org/10.1021/acsphotonics.6b00109

    Article  CAS  Google Scholar 

  199. Su S, Zhang C, Yuwen L, Chao J, Zuo X, Liu X, Song C, Fan C, Wang L (2014) Creating SERS hot spots on MoS 2 nanosheets with in situ grown gold nanoparticles. ACS Appl Mater Interfaces 6(21):18735–18741. https://doi.org/10.1021/am5043092

    Article  PubMed  CAS  Google Scholar 

  200. Santos EdB, Lima ECNL, de Oliveira CS, Sigoli FA, Mazali IO (2014) Fast detection of paracetamol on a gold nanoparticle–chitosan substrate by SERS. Anal Methods 6(11):3564. https://doi.org/10.1039/c4ay00635f

    Article  CAS  Google Scholar 

  201. Quesada-González D, Merkoçi A (2015) Nanoparticle-based lateral flow biosensors. Biosens Bioelectron 73:47–63. https://doi.org/10.1016/j.bios.2015.05.050

    Article  PubMed  CAS  Google Scholar 

  202. Grasseschi D, Zamarion VM, Araki K, Toma HE (2010) Surface enhanced Raman scattering spot tests: a new insight on Feigl’s analysis using gold nanoparticles. Anal Chem 82(22):9146–9149. https://doi.org/10.1021/ac102238f

    Article  PubMed  CAS  Google Scholar 

  203. Vianna PG, Grasseschi D, Domingues SH, de Matos CJS (2018) Real-time optofluidic surface-enhanced Raman spectroscopy based on a graphene oxide/gold nanorod nanocomposite. Opt Express 26(18):22698. https://doi.org/10.1364/oe.26.022698

    Article  PubMed  CAS  Google Scholar 

  204. Grasseschi D, Lima FS, Nakamura M, Toma HE (2015) Hyperspectral dark-field microscopy of gold nanodisks. Micron 69:15–20. https://doi.org/10.1016/j.micron.2014.10.007

    Article  PubMed  CAS  Google Scholar 

  205. Yuan Z, Cheng J, Cheng X, He Y, Yeung ES (2012) Highly sensitive DNA hybridization detection with single nanoparticle flash-lamp darkfield microscopy. Analyst 137(13):2930. https://doi.org/10.1039/c2an16171k

    Article  PubMed  CAS  Google Scholar 

  206. de Pereira MLO, de Souza Paiva R, Vasconcelos TL, Oliveira AG, Oliveira Salles M, Toma HE, Grasseschi D, (2020) Photoinduced electron transfer dynamics of AuNPs and Au@PdNPs supported on graphene oxide probed by dark-field hyperspectral microscopy. Dalton Trans. https://doi.org/10.1039/D0DT01018A

  207. Mauriz E (2020) Clinical applications of visual plasmonic colorimetric sensing. Sensors 20(21):6214

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  208. Kim YH, Lee J, Kim YE, Chong CK, Pinchemel Y, Reisdörfer F, Coelho JB, Dias RF, Bae PK, Gusmão ZPM, et al. (2018c) Development of a rapid diagnostic test kit to detect igg/igm antibody against zika virus using monoclonal antibodies to the envelope and non-structural protein 1 of the virus. Korean J Parasitol 56(1):61

  209. Shrivas K, Sahu J, Maji P, Sinha D (2017) Label-free selective detection of ampicillin drug in human urine samples using silver nanoparticles as a colorimetric sensing probe. New J Chem 41(14):6685–6692

    Article  CAS  Google Scholar 

  210. Versiani AF, Martins EM, Andrade LM, Cox L, Pereira GC, Barbosa-Stancioli EF, Nogueira ML, Ladeira LO, da Fonseca FG (2020) Nanosensors based on lspr are able to serologically differentiate dengue from zika infections. Sci Rep 10(1):11302

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  211. Martinez-Liu C, Machain-Williams C, Martinez-Acuña N, Lozano-Sepulveda S, Galan-Huerta K, Arellanos-Soto D, Meléndez-Villanueva M, Ávalos-Nolazco D, Pérez-Ibarra K, Galindo-Rodríguez S et al (2022) Development of a rapid gold nanoparticle-based lateral flow immunoassay for the detection of dengue virus. Biosensors 12(7):495

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  212. Stephen BJ, Suchanti S, Jain D, Dhaliwal H, Sharma V, Kaur R, Mishra R, Singh A (2022) Dna biosensor based detection for neglected tropical disease: moving towards smart diagnosis. Sens Revw (ahead-of-print) 42(5):517–525

  213. Pirich CL, de Freitas RA, Torresi RM, Picheth GF, Sierakowski MR (2017) Piezoelectric immunochip coated with thin films of bacterial cellulose nanocrystals for dengue detection. Biosens Bioelectron 92:47–53

    Article  PubMed  CAS  Google Scholar 

  214. Ramos-Jesus J, Pontes-de Carvalho LC, Melo SMB, Alcântara-Neves NM, Dutra RF (2016) A gold nanoparticle piezoelectric immunosensor using a recombinant antigen for detecting leishmania infantum antibodies in canine serum. Biochem Eng J 110:43–50

    Article  CAS  Google Scholar 

  215. Lopez GA, Estevez MC, Soler M, Lechuga LM (2017) Recent advances in nanoplasmonic biosensors: applications and lab-on-a-chip integration. Nanophotonics 6(1):123–136. https://doi.org/10.1515/nanoph-2016-0101

    Article  CAS  Google Scholar 

  216. Liu Y, Ling J, Huang CZ (2011) Individually color-coded plasmonic nanoparticles for RGB analysis. Chem Commun 47(28):8121–8123

    Article  CAS  Google Scholar 

  217. Yazdian-Robati R, Hedayati N, Dehghani S, Ramezani M, Alibolandi M, Saeedi M, Abnous K, Taghdisi SM (2021) Application of the catalytic activity of gold nanoparticles for development of optical aptasensors. Anal Biochem 629:114307

    Article  PubMed  CAS  Google Scholar 

  218. Gracie K, Correa E, Mabbott S, Dougan JA, Graham D, Goodacre R, Faulds K (2014) Simultaneous detection and quantification of three bacterial meningitis pathogens by sers. Chem Sci 5(3):1030–1040

    Article  CAS  Google Scholar 

  219. Lee W, Shaban SM, Pyun DG, Kim DH (2019) Solid-phase colorimetric apta-biosensor for thrombin detection. Thin Solid Films 686:137428

    Article  CAS  Google Scholar 

  220. Kim J, Oh SY, Shukla S, Hong SB, Heo NS, Bajpai VK, Chun HS, Jo CH, Choi BG, Huh YS, et al. (2018b) Heteroassembled gold nanoparticles with sandwich-immunoassay lspr chip format for rapid and sensitive detection of hepatitis b virus surface antigen (hbsag). Biosens Bioelectron 107:118–122

  221. Nasrin F, Chowdhury AD, Ganganboina AB, Achadu OJ, Hossain F, Yamazaki M, Park EY (2020) Fluorescent and electrochemical dual-mode detection of chikungunya virus e1 protein using fluorophore-embedded and redox probe-encapsulated liposomes. Microchim Acta 187:1–11

    Article  Google Scholar 

  222. Farooq S, Vital CV, Tikhonowski G, Popov AA, Klimentov SM, Malagon LA, de Araujo RE, Kabashin AV, Rativa D (2023) Thermo-optical performance of bare laser-synthesized tin nanofluids for direct absorption solar collector applications. Sol Energy Mater Sol Cells 252:112203

    Article  CAS  Google Scholar 

  223. Al-Gebory L, Menguc MP (2020) A review of optical and radiative properties of nanoparticle suspensions: effects of particle stability, agglomeration, and sedimentation. J Enhanc Heat Transf 27(3)

  224. Mudalige T, Qu H, Van Haute D, Ansar SM, Paredes A, Ingle T (2019) Characterization of nanomaterials: Tools and challenges. Nanomaterials for Food Applications pp 313–353

  225. Stodden V, Seiler J, Ma Z (2018) An empirical analysis of journal policy effectiveness for computational reproducibility. Proc Natl Acad Sci 115(11):2584–2589

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  226. Vigneshwaran N, Kathe A, Varadarajan P, Nachane R, Balasubramanya R (2007) Functional finishing of cotton fabrics using silver nanoparticles. J Nanosci Nanotechnol 7(6):1893–1897

    Article  PubMed  CAS  Google Scholar 

  227. Tolaymat TM, El Badawy AM, Genaidy A, Scheckel KG, Luxton TP, Suidan M (2010) An evidence-based environmental perspective of manufactured silver nanoparticle in syntheses and applications: a systematic review and critical appraisal of peer-reviewed scientific papers. Sci Total Environ 408(5):999–1006

    Article  PubMed  CAS  Google Scholar 

  228. Karthik L, Kumar G, Keswani T, Bhattacharyya A, Reddy BP, Rao KB (2013) Marine actinobacterial mediated gold nanoparticles synthesis and their antimalarial activity. Nanomed Nanotechnol Biol Med 9(7):951–960

  229. Marimuthu S, Antonisamy AJ, Malayandi S, Rajendran K, Tsai PC, Pugazhendhi A, Ponnusamy VK (2020) Silver nanoparticles in dye effluent treatment: a review on synthesis, treatment methods, mechanisms, photocatalytic degradation, toxic effects and mitigation of toxicity. J Photochem Photobiol B 205:111823

  230. Tortella G, Rubilar O, Durán N, Diez M, Martínez M, Parada J, Seabra A (2020) Silver nanoparticles: Toxicity in model organisms as an overview of its hazard for human health and the environment. J Hazard Mater 390:121974

    Article  PubMed  CAS  Google Scholar 

  231. Sawicki K, Czajka M, Matysiak-Kucharek M, Fal B, Drop B, Męczyńska-Wielgosz S, Sikorska K, Kruszewski M, Kapka-Skrzypczak L (2019) Toxicity of metallic nanoparticles in the central nervous system. Nanotechnol Rev 8(1):175–200

    Article  CAS  Google Scholar 

  232. Fan M, Andrade GF, Brolo AG (2020) A review on recent advances in the applications of surface-enhanced Raman scattering in analytical chemistry. Anal Chim Acta 1097:1–29. https://doi.org/10.1016/j.aca.2019.11.049

    Article  PubMed  CAS  Google Scholar 

  233. dos Santos DP (2020) Statistical analysis of surface-enhanced Raman scattering enhancement distributions. J Phys Chem C 124(12):6811–6821. https://doi.org/10.1021/acs.jpcc.9b11574

    Article  CAS  Google Scholar 

Download references

Funding

This work was funded by CNPq (INCT-INTERAS 406761/2022-1), INCT-INFO (465763/2014-6); Sisfoton (440228/2021-2); PQ (314517/2021-9); CAPES Finance code 001 and FAPESP (17/50332-0) and FAPESP (21/00633-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sajid Farooq.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farooq, S., Zezell, D.M. Advances in Metallic-Based Localized Surface Plasmon Sensors for Enhanced Tropical Disease Detection: A Comprehensive Review. Plasmonics (2023). https://doi.org/10.1007/s11468-023-02109-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11468-023-02109-z

Keywords

Navigation