Skip to main content
Log in

Contrasting physical properties of the trilayer nickelates Nd4Ni3O10 and Nd4Ni3O8

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

We report the crystal structures and physical properties of trilayer nickelates Nd4Ni3O10 and Nd4Ni3O8. Measurements of magnetization and electrical resistivity display contrasting behaviors in the two compounds. Nd4Ni3O10 shows a paramagnetic metallic behavior with a metal-to-metal phase transition (T*) at about 162 K, as revealed by both magnetic susceptibility and resistivity. Further magnetoresistance and Hall coefficient results show a negative magnetoresistance at low temperatures and the carrier type of Nd4Ni3O10 is dominated by hole-type charge carriers. The significant enhancement of Hall coefficient and resistivity below T* suggests that effective charge carrier density decreases when cooling through the transition temperature. In contrast, Nd4Ni3O8 shows an insulating behavior. In addition, this compound shows a paramagnetic behavior with the similar magnetic moment as that of Nd4Ni3O10 derived from the Curie-Weiss fitting. This may suggest that the magnetic moments in both systems are contributed by Nd3+ ions. By applying pressures up to about 49 GPa, the insulating behavior is still present and becomes even stronger under a high pressure. Our results suggest that the different Ni configurations (Ni1+/2+ or Ni2+/3+) and the changes of coordination environment of Ni sites may account for the contrasting behaviors in trilayer nickelates Nd4Ni3O10 and Nd4Ni3O8.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. G. Bednorz, and K. A. Müller, Z. Phys. B-Condens. Matter 64, 189 (1986).

    ADS  Google Scholar 

  2. K. Takada, H. Sakurai, E. Takayama-Muromachi, F. Izumi, R. A. Dilanian, and T. Sasaki, Nature 422, 53 (2003).

    ADS  Google Scholar 

  3. Y. Maeno, H. Hashimoto, K. Yoshida, S. Nishizaki, T. Fujita, J. G. Bednorz, and F. Lichtenberg, Nature 372, 532 (1994).

    ADS  Google Scholar 

  4. F. Wang, and T. Senthil, Phys. Rev. Lett. 106, 136402 (2011), arXiv: 1011.3500.

    ADS  Google Scholar 

  5. V. I. Anisimov, D. Bukhvalov, and T. M. Rice, Phys. Rev. B 59, 7901 (1999).

    ADS  Google Scholar 

  6. V. V. Poltavets, K. A. Lokshin, A. H. Nevidomskyy, M. Croft, T. A. Tyson, J. Hadermann, G. van Tendeloo, T. Egami, G. Kotliar, N. Aproberts-Warren, A. P. Dioguardi, N. J. Curro, and M. Greenblatt, Phys. Rev. Lett. 104, 206403 (2000), arXiv: 1003.3276.

    ADS  Google Scholar 

  7. J. Chaloupka, and G. Khaliullin, Phys. Rev. Lett. 100, 016404 (2008), arXiv: 1005.1464.

    ADS  Google Scholar 

  8. D. Li, K. Lee, B. Y. Wang, M. Osada, S. Crossley, H. R. Lee, Y. Cui, Y. Hikita, and H. Y. Hwang, Nature 572, 624 (2019).

    ADS  Google Scholar 

  9. G. M. Zhang, Y. Yang, and F. C. Zhang, Phys. Rev. B 101, 020501 (2020), arXiv: 1909.11845.

    ADS  Google Scholar 

  10. A. S. Botana, and M. R. Norman, Phys. Rev. X 10, 011024 (2020), arXiv: 1908.10946.

    Google Scholar 

  11. L. H. Hu, and C. Wu, Phys. Rev. Res. 1, 032046 (2019), arXiv: 1910.02482.

    Google Scholar 

  12. E. M. Nica, J. Krishna, R. Yu, Q. Si, A. S. Botana, and O. Erten, Phys. Rev. B 102, 020504 (2020), arXiv: 2003.09132.

    ADS  Google Scholar 

  13. M. Hirayama, T. Tadano, Y. Nomura, and R. Arita, arXiv: 1910.03974v1.

  14. L. Si, W. Xiao, J. Kaufmann, J. M. Tomczak, Y. Lu, Z. Zhong, and K. Held, Phys. Rev. Lett. 124, 166402 (2020), arXiv: 1911.06917.

    ADS  Google Scholar 

  15. Y. Fu, L. Wang, H. Cheng, S. Pei, X. Zhou, J. Chen, S. Wang, R. Zhao, W. Jiang, C. Liu, M. Huang, X. Wang, Y. Zhao, D. Yu, F. Ye, S. Wang, and J.-W. Mei, arXiv: 1911.03177v2.

  16. T. Zhou, Y. Gao, and Z. D. Wang, Sci. China-Phys. Mech. Astron. 63, 287412 (2020), arXiv: 1910.05757.

    ADS  Google Scholar 

  17. Q. Li, C. He, J. Si, X. Zhu, Y. Zhang, and H. H. Wen, Commun. Mater. 1, 16 (2020).

    Google Scholar 

  18. B. V. Beznosikov, and K. S. Aleksandrov, Crystallogr. Rep. 45, 792 (2000).

    ADS  Google Scholar 

  19. M. Greenblatt, Curr. Opin. Solid State Mater. Sci. 2, 174 (1997).

    ADS  Google Scholar 

  20. K. Sreedhar, M. McElfresh, D. Perry, D. Kim, P. Metcalf, and J. M. Honig, J. Solid State Chem. 110, 208 (1994).

    ADS  Google Scholar 

  21. G. Wu, J. J. Neumeier, and M. F. Hundley, Phys. Rev. B 63, 245120 (2001).

    ADS  Google Scholar 

  22. M. D. Carvalho, M. M. Cruz, A. Wattiaux, J. M. Bassat, F. M. A. Costa, and M. Godinho, J. Appl. Phys. 88, 544 (2000).

    ADS  Google Scholar 

  23. J. M. Bassat, C. Allançon, P. Odier, J. P. Loup, M. D. Carvalho, and A. Wattiaux, Eur. J. Solid State lnorg. Chem. 35, 173 (1998).

    Google Scholar 

  24. Z. Zhang, and M. Greenblatt, J. Solid State Chem. 117, 236 (1995).

    ADS  Google Scholar 

  25. S. Huangfu, X. Zhang, and A. Schilling, Phys. Rev. Res. 2, 033247 (2020), arXiv: 2003.08478.

    Google Scholar 

  26. J. Zhang, H. Zheng, Y.-S. Chen, Y. Ren, M. Yonemura, A. Huq, and J. F. Mitchell, Phys. Rev. Mater. 4, 083402 (2020), arXiv: 1904.10048.

    Google Scholar 

  27. S. Kumar, Ø. Fjellvåg, A. O. Sjåstad, and H. Fjellvåg, J. Magn. Magn. Mater. 496, 165915 (2020).

    Google Scholar 

  28. S. Huangfu, G. D. Jakub, X. Zhang, O. Blacque, P. Puphal, E. Pomjakushina, F. O. von Rohr, and A. Schilling, Phys. Rev. B 101, 104104 (2020), arXiv: 2001.05916.

    ADS  Google Scholar 

  29. B. Z. Li, C. Wang, P. T. Yang, J. P. Sun, Y. B. Liu, J. Wu, Z. Ren, J. G. Cheng, G. M. Zhang, and G. H. Cao, Phys. Rev. B 101, 195142 (2020), arXiv: 2001.09059.

    ADS  Google Scholar 

  30. H. Li, X. Zhou, T. Nummy, J. Zhang, V. Pardo, W. E. Pickett, J. F. Mitchell, and D. S. Dessau, Nat. Commun. 8, 704 (2017).

    ADS  Google Scholar 

  31. D. K. Seo, W. Liang, M. H. Whangbo, Z. Zhang, and M. Greenblatt, Inorg. Chem. 35, 6396 (1996).

    Google Scholar 

  32. M. Greenblatt, Z. Zhang, and M. H. Whangbo, Synth. Met. 85, 1451 (1997).

    Google Scholar 

  33. J. Zhang, A. S. Botana, J. W. Freeland, D. Phelan, H. Zheng, V. Pardo, M. R. Norman, and J. F. Mitchell, Nat. Phys. 13, 864 (2017), arXiv: 1705.00563.

    Google Scholar 

  34. P. Lacorre, J. Solid State Chem. 97, 495 (1992).

    ADS  Google Scholar 

  35. V. V. Poltavets, K. A. Lokshin, M. Croft, T. K. Mandal, T. Egami, and M. Greenblatt, Inorg. Chem. 46, 10887 (2007).

    Google Scholar 

  36. J. Zhang, Y. S. Chen, D. Phelan, H. Zheng, M. R. Norman, and J. F. Mitchell, Proc. Natl. Acad. Sci. USA 113, 8945 (2016), arXiv: 1601.03711.

    ADS  Google Scholar 

  37. R. Retoux, J. Rodriguez-Carvajal, and P. Lacorre, J. Solid State Chem. 140, 307 (1998).

    ADS  Google Scholar 

  38. S. Kikkawa, N. Taya, and F. Kanamaru, J. Mater. Res. 13, 812 (1998).

    ADS  Google Scholar 

  39. N. Aproberts-Warren, A. P. Dioguardi, V. V. Poltavets, M. Greenblatt, P. Klavins, and N. J. Curro, Phys. Rev. B 83, 014402 (2011).

    ADS  Google Scholar 

  40. V. Pardo, and W. E. Pickett, Phys. Rev. Lett. 105, 266402 (2010), arXiv: 1008.2707.

    ADS  Google Scholar 

  41. A. S. Botana, V. Pardo, W. E. Pickett, and M. R. Norman, Phys. Rev. B 94, 081105 (2016), arXiv: 1604.06326.

    ADS  Google Scholar 

  42. H. M. Rietveld, J. Appl. Crystallogr. 2, 65 (1969).

    Google Scholar 

  43. R. W. Cheary, and A. Coelho, J. Appl. Crystallogr. 25, 109 (1992).

    Google Scholar 

  44. S. H. N. Lim, D. R. McKenzie, and M. M. M. Bilek, Rev. Sci. Instrum. 80, 075109 (2009).

    ADS  Google Scholar 

  45. H. K. Mao, J. Xu, and P. M. Bell, J. Geophys. Res. Solid Earth 91, 4573 (1986).

    Google Scholar 

  46. T. Takamatsu, M. Kato, T. Noji, and Y. Koike, Jpn. J. Appl. Phys. 49, 093101 (2010).

    ADS  Google Scholar 

  47. A. Olafsen, H. Fjellvåg, and B. C. Hauback, J. Solid State Chem. 151, 46 (2000).

    ADS  Google Scholar 

  48. I. D. Brown, and D. Altermatt, Acta Cryst.logr B Struct. Sci. 41, 244 (1985).

    Google Scholar 

  49. J. Zhang, D. Phelan, A. S. Botana, Y.-S. Chen, H. Zheng, M. Krogstad, S. G. Wang, Y. Qiu, J. A. Rodriguez-Rivera, R. Osborn, S. Rosenkranz, M. R. Norman, and J. F. Mitchell, arXiv: 2004.07897.

  50. A. Ghosh, and S. Hazra, Solid State Commun. 106, 677 (1998).

    ADS  Google Scholar 

  51. T. Serin, A. Yildiz, Ş. H. Şahin, and N. Serin, Phys. B-Cond. Matter 406, 3551 (2011).

    ADS  Google Scholar 

  52. J. Zhang, D. M. Pajerowski, A. S. Botana, H. Zheng, L. Harriger, J. Rodriguez-Rivera, J. P. C. Ruff, N. J. Schreiber, B. Wang, Y. S. Chen, W. C. Chen, M. R. Norman, S. Rosenkranz, J. F. Mitchell, and D. Phelan, Phys. Rev. Lett. 122, 247201 (2019), arXiv: 1903.03246.

    ADS  Google Scholar 

  53. J. G. Cheng, J. S. Zhou, J. B. Goodenough, H. D. Zhou, K. Matsubayashi, Y. Uwatoko, P. P. Kong, C. Q. Jin, W. G. Yang, and G. Y. Shen, Phys. Rev. Lett. 108, 236403 (2012).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to XiYu Zhu or Hai-Hu Wen.

Additional information

This work was supported by the National Key R&D Program of China (Grant Nos. 2016YFA0300401, and 2016YFA0401704), the National Natural Science Foundation of China (Grant Nos. A0402/11534005, and A0402/11674164), and the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB25000000).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., He, C., Zhu, X. et al. Contrasting physical properties of the trilayer nickelates Nd4Ni3O10 and Nd4Ni3O8. Sci. China Phys. Mech. Astron. 64, 227411 (2021). https://doi.org/10.1007/s11433-020-1613-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-020-1613-3

Navigation