Skip to main content
Log in

Dimensional crossover tuned by pressure in layered magnetic NiPS3

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

The physical properties of most 2D materials are highly dependent on the nature of their interlayer interaction. In-depth studies of the interlayer interaction are beneficial to the understanding of the physical properties of 2D materials and permit the development of related devices. Layered magnetic NiPS3 has unique magnetic and electronic properties. The electronic band structure and corresponding magnetic state of NiPS3 are expected to be sensitive to the interlayer interaction, which can be tuned by external pressure. Here, we report an insulator-metal transition accompanied by the collapse of magnetic order during the 2D-3D structural crossover induced by hydrostatic pressure. A two-stage phase transition from a monoclinic (C2/m) to a trigonal \((P\bar 31m)\) lattice is identified via ab initio simulations and confirmed via high-pressure X-ray diffraction and Raman scattering; this transition corresponds to a layer-by-layer slip mechanism along the a-axis. Temperature-dependent resistance measurements and room temperature infrared spectroscopy under different pressures demonstrate that the insulator-metal transition and the collapse of the magnetic order occur at ∼20 GPa, which is confirmed by low-temperature Raman scattering measurements and theoretical calculations. These results establish a strong correlation between the structural change, electric transport, and magnetic phase transition and expand our understanding of layered magnetic materials. Moreover, the structural transition caused by the interlayer displacement has significance for designing similar devices at ambient pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. K. Geim, and K. S. Novoselov, Nat. Mater. 6, 183 (2007).

    Article  ADS  Google Scholar 

  2. M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, and H. Zhang, Nat. Chem. 5, 263 (2013).

    Article  Google Scholar 

  3. D. Jariwala, V. K. Sangwan, L. J. Lauhon, T. J. Marks, and M. C. Hersam, ACS Nano 8, 1102 (2014).

    Article  Google Scholar 

  4. S. Manzeli, D. Ovchinnikov, D. Pasquier, O. V. Yazyev, and A. Kis, Nat. Rev. Mater. 2, 17033 (2017).

    Article  ADS  Google Scholar 

  5. C. Gong, L. Li, Z. Li, H. Ji, A. Stern, Y. Xia, T. Cao, W. Bao, C. Wang, Y. Wang, Z. Q. Qiu, R. J. Cava, S. G. Louie, J. Xia, and X. Zhang, Nature 546, 265 (2017), arXiv: 1703.05753.

    Article  ADS  Google Scholar 

  6. J. U. Lee, S. Lee, J. H. Ryoo, S. Kang, T. Y. Kim, P. Kim, C. H. Park, J. G. Park, and H. Cheong, Nano Lett. 16, 7433 (2016), arXiv: 1608.04169.

    Article  ADS  Google Scholar 

  7. X. Li, and J. Yang, J. Mater. Chem. C 2, 7071 (2014).

    Article  Google Scholar 

  8. D. Lançon, H. C. Walker, E. Ressouche, B. Ouladdiaf, K. C. Rule, G. J. McIntyre, T. J. Hicks, H. M. Rønnow, and A. R. Wildes, Phys. Rev. B 94, 214407 (2016).

    Article  ADS  Google Scholar 

  9. A. R. Wildes, V. Simonet, E. Ressouche, G. J. McIntyre, M. Avdeev, E. Suard, S. A. J. Kimber, D. Lançon, G. Pepe, B. Moubaraki, and T. J. Hicks, Phys. Rev. B 92, 224408 (2015).

    Article  ADS  Google Scholar 

  10. A. R. Wildes, K. C. Rule, R. I. Bewley, M. Enderle, and T. J. Hicks, J. Phys.-Condens. Matter 24, 416004 (2012).

    Article  Google Scholar 

  11. A. R. Wildes, H. M. Rønnow, B. Roessli, M. J. Harris, and K. W. Godfrey, Phys. Rev. B 74, 094422 (2006).

    Article  ADS  Google Scholar 

  12. A. R. Wildes, B. Roessli, B. Lebech, and K. W. Godfrey, J. Phys.-Condens. Matter 10, 6417 (1998).

    Article  ADS  Google Scholar 

  13. A. R. Wildes, V. Simonet, E. Ressouche, R. Ballou, and G. J. McIntyre, J. Phys.-Condens. Matter 29, 455801 (2017), arXiv: 1706.07989.

    Article  ADS  Google Scholar 

  14. X. Li, X. Wu, and J. Yang, J. Am. Chem. Soc. 136, 11065 (2014).

    Article  Google Scholar 

  15. X. Li, T. Cao, Q. Niu, J. Shi, and J. Feng, Proc. Natl. Acad. Sci. USA 110, 3738 (2013), arXiv: 1210.4623.

    Article  ADS  Google Scholar 

  16. R. Brec, Solid State Ion. 22, 3 (1986).

    Article  Google Scholar 

  17. B. L. Chittari, Y. Park, D. Lee, M. Han, A. H. MacDonald, E. Hwang, and J. Jung, Phys. Rev. B 94, 184428 (2016), arXiv: 1604.06445.

    Article  ADS  Google Scholar 

  18. P. Rabu, and M. Drillon, Adv. Eng. Mater. 5, 189 (2003).

    Article  Google Scholar 

  19. F. Wang, T. A. Shifa, P. Yu, P. He, Y. Liu, F. Wang, Z. Wang, X. Zhan, X. Lou, F. Xia, and J. He, Adv. Funct. Mater. 28, 1802151 (2018).

    Article  Google Scholar 

  20. P. A. Joy, and S. Vasudevan, Phys. Rev. B 46, 5425 (1992).

    Article  ADS  Google Scholar 

  21. G. Ouvrard, R. Brec, and J. Rouxel, Mater. Res. Bull. 20, 1181 (1985).

    Article  Google Scholar 

  22. K. Du, X. Wang, Y. Liu, P. Hu, M. I. B. Utama, C. K. Gan, Q. Xiong, and C. Kloc, ACS Nano 10, 1738 (2016).

    Article  Google Scholar 

  23. C. T. Kuo, M. Neumann, K. Balamurugan, H. J. Park, S. Kang, H. W. Shiu, J. H. Kang, B. H. Hong, M. Han, T. W. Noh, and J. G. Park, Sci. Rep. 6, 20904 (2016).

    Article  ADS  Google Scholar 

  24. N. Kurita, and K. Nakao, J. Phys. Soc. Jpn. 58, 232 (1989).

    Article  ADS  Google Scholar 

  25. M. H. Whangbo, R. Brec, G. Ouvrard, and J. Rouxel, Inorg. Chem. 24, 2459 (1985).

    Article  Google Scholar 

  26. M. Piacentini, F. S. Khumalo, C. G. Olson, J. W. Anderegg, and D. W. Lynch, Chem. Phys. 65, 289 (1982).

    Article  Google Scholar 

  27. R. Brec, D. M. Schleich, G. Ouvrard, A. Louisy, and J. Rouxel, Inorg. Chem. 18, 1814 (1979).

    Article  Google Scholar 

  28. X. Fan, C. H. Chang, W. T. Zheng, J. L. Kuo, and D. J. Singh, J. Phys. Chem. C 119, 10189 (2015).

    Article  Google Scholar 

  29. M. Tsurubayashi, K. Kodama, M. Kano, K. Ishigaki, Y. Uwatoko, T. Watanabe, K. Takase, and Y. Takano, AIP Adv. 8, 101307 (2018).

    Article  ADS  Google Scholar 

  30. C. R. S. Haines, M. J. Coak, A. R. Wildes, G. I. Lampronti, C. Liu, P. Nahai-Williamson, H. Hamidov, D. Daisenberger, and S. S. Saxena, Phys. Rev. Lett. 121, 266801 (2018).

    Article  ADS  Google Scholar 

  31. Y. Wang, Z. Zhou, T. Wen, Y. Zhou, N. Li, F. Han, Y. Xiao, P. Chow, J. Sun, M. Pravica, A. L. Cornelius, W. Yang, and Y. Zhao, J. Am. Chem. Soc. 138, 15751 (2016).

    Article  Google Scholar 

  32. Y. Wang, J. Ying, Z. Zhou, J. Sun, T. Wen, Y. Zhou, N. Li, Q. Zhang, F. Han, Y. Xiao, P. Chow, W. Yang, V. V. Struzhkin, Y. Zhao, and H. K. Mao, Nat. Commun. 9, 1914 (2018).

    Article  ADS  Google Scholar 

  33. R. A. Evarestov, and A. Kuzmin, J. Comput. Chem. 41, 1337 (2020).

    Article  Google Scholar 

  34. H. S. Kim, K. Haule, and D. Vanderbilt, Phys. Rev. Lett. 123, 236401 (2019), arXiv: 1808.09263.

    Article  ADS  Google Scholar 

  35. M. J. Coak, S. Son, D. Daisenberger, H. Hamidov, C. R. S. Haines, P. L. Alireza, A. R. Wildes, C. Liu, S. S. Saxena, and J. G. Park, npj Quantum Mater. 4, 38 (2019), arXiv: 1903.10971.

    Article  ADS  Google Scholar 

  36. M. J. Coak, D. M. Jarvis, H. Hamidov, C. R. S. Haines, P. L. Alireza, C. Liu, S. Son, I. Hwang, G. I. Lampronti, D. Daisenberger, P. Nahai-Williamson, A. R. Wildes, S. S. Saxena, and J. G. Park, J. Phys.-Condens. Matter 32, 124003 (2020).

    Article  ADS  Google Scholar 

  37. X. Yu, F. Li, Y. Han, F. Hong, C. Jin, Z. He, and Q. Zhou, Chin. Phys. B 27, 070701 (2018).

    Article  ADS  Google Scholar 

  38. G. Kresse, and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).

    Article  ADS  Google Scholar 

  39. P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).

    Article  ADS  Google Scholar 

  40. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  41. A. Tkatchenko, and M. Scheffler, Phys. Rev. Lett. 102, 073005 (2009).

    Article  ADS  Google Scholar 

  42. R. R. Rao, and A. K. Raychaudhuri, J. Phys. Chem. Solids 53, 577 (1992).

    Article  ADS  Google Scholar 

  43. J. T. Wang, C. F. Chen, and Y. Kawazoe, Phys. Rev. Lett. 106, 075501 (2011).

    Article  ADS  Google Scholar 

  44. J. T. Wang, C. F. Chen, H. Mizuseki, and Y. Kawazoe, Phys. Rev. Lett. 110, 165503 (2013).

    Article  ADS  Google Scholar 

  45. L. Zhao, C. Yi, C. T. Wang, Z. Chi, Y. Yin, X. Ma, J. Dai, P. Yang, B. Yue, J. Cheng, F. Hong, J. T. Wang, Y. Han, Y. Shi, and X. Yu, Phys. Rev. Lett. 126, 155701 (2021), arXiv: 2102.00437.

    Article  ADS  Google Scholar 

  46. W. Klingen, G. Eulenberger, and H. Hahn, Naturwissenschaften 55, 229 (1968).

    Article  ADS  Google Scholar 

  47. H. M. Rietveld, J. Appl. Crystallogr. 2, 65 (1969).

    Article  Google Scholar 

  48. H. Xiang, B. Xu, Y. Xia, J. Yin, and Z. Liu, RSC Adv. 6, 89901 (2016).

    Article  ADS  Google Scholar 

  49. S. S. Rosenblum, and R. Merlin, Phys. Rev. B 59, 6317 (1999).

    Article  ADS  Google Scholar 

  50. K. Kim, S. Y. Lim, J. U. Lee, S. Lee, T. Y. Kim, K. Park, G. S. Jeon, C. H. Park, J. G. Park, and H. Cheong, Nat. Commun. 10, 345 (2019), arXiv: 1901.10890.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fang Hong, Jian-Tao Wang, Qingming Zhang or Xiaohui Yu.

Additional information

This work was supported by the National Key Research and Development Program of China (Grant Nos. 2016YFA0401503, 2018YFA0305700, 2017YFA0302904, 2020YFA0711502, and 2016YFA0300500), the National Natural Science Foundation of China (Grant Nos. 11575288, 11974387, U1932215, U1930401, 12004014, 22090041, and 11774419), the Strategic Priority Research Program and Key Research Program of Frontier Sciences of the Chinese Academy of Sciences (Grant Nos. XDB33000000, XDB25000000, and QYZDBSSW-SLH013), the Youth Innovation Promotion Association of Chinese Academy of Sciences (Grant No. Y202003), and the CAS Interdisciplinary Innovation Team (Grant No. JCTD-2019-01). ADXRD measurements were performed at 4W2 High Pressure Station, Beijing Synchrotron Radiation Facility (BSRF), which is supported by the Chinese Academy of Sciences (Grant Nos. KJCX2-SW-N20, and KJCX2-SW-N03). This work was partially carried out at high-pressure synergetic measurement station of synergetic extreme condition user facility.

Supporting Information

The supporting information is available online at http://phys.scichina.com and https://link.springer.com. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information for

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, X., Wang, Y., Yin, Y. et al. Dimensional crossover tuned by pressure in layered magnetic NiPS3. Sci. China Phys. Mech. Astron. 64, 297011 (2021). https://doi.org/10.1007/s11433-021-1727-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-021-1727-6

PACS number(s)

Navigation