Skip to main content

Advertisement

Log in

Fluoride ions sorption using functionalized magnetic metal oxides nanocomposites: a review

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Fluoride is an anionic pollutant found superfluous in surface or groundwater as a result of anthropogenic actions from improper disposal of industrial effluents. In drinking water, superfluous fluoride has been revealed to trigger severe health problems in humans. Hence, developing a comprehensive wastewater decontamination process for the effective management and preservation of water contaminated with fluoride is desirable, as clean water demand is anticipated to intensify considerably over the upcoming years. In this regard, there have been increased efforts by researchers to create novel magnetic metal oxide nanocomposites which are functionalized for the remediation of wastewater owing to their biocompatibility, cost-effectiveness, relative ease to recover and reuse, non-noxiousness, and ease to separate from solutions using a magnetic field. This review makes an all-inclusive effort to assess the effects of experimental factors on the sorption of fluoride employing magnetic metal oxide nanosorbents. The removal efficiency of fluoride ions onto magnetic metal oxides nanocomposites were largely influenced by the solution pH and ions co-existing with fluoride. Overall, it was noticed from the reviewed researches that the maximum sorption capacity using various metal oxides for fluoride sorption was in the order of aluminium oxides >cerium oxides > iron oxides > magnesium oxides> titanium oxides, and most sorption of fluoride ions was inhibited by the existence of phosphate trailed by sulphate. The mechanism of fluoride sorption onto various sorbents was due to ion exchange, electrostatic attraction, and complexation mechanism.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38

Similar content being viewed by others

Data availability

Not applicable.

Abbreviations

ALCS-Fe-AL:

acid leaching carbonized sludge/sludge-based carbon-iron-aluminium

Beta C-CIHFO:

β-cyclodextrin

CMS-Al-Zr:

carboxymethyl starch sodium-aluminium-zirconium

CTN:

concentration

D-R:

Dubinin-Radushkevich

F:

fluoride

F:

fluorine

Fe3O4 :

magnetite

GO:

graphene oxide

HAO:

hydroxyl aluminium oxalate

HAP:

hydroxyapatite

HF:

hydrogen fluoride

HM:

heavy metals

HMI:

heavy metals ions

IO:

iron oxide

IONMs:

iron oxide nanomaterials

IONS:

iron oxide nanosorbents

LDH:

layer double hydroxide

LGR:

Langmuir

MAA:

magnetic alumina aerogel

MI:

metal ions

MIO:

magnetic iron oxides

MeO:

metal oxides

MF:

magnetic field

MIONPs:

magnetic iron oxides nanoparticles

MS :

saturation magnetization

NCs:

nanocomposite

nm:

nanometer

NMs:

nanomaterials

NMOs:

nanosized metal oxides

NPs:

nanoparticles

NS:

nanosorbents

NT:

nanotechnology

OH- :

hydroxide

OH-:

hydroxyl

PFO:

pseudo-first-order

pHPZC :

point of zero charge

PSO:

pseudo-second-order

PPy:

polypyrrole

q+:

positive charge

q-:

negative charge

RSM:

response surface methodology

SC:

sorption capacity

SCD:

supercritical drying

SEM:

scanning electron microscope

STM:

scanning tunnel microscope

TNB:

titanate nanobelt

α-Fe2O3 :

hematite

γ-Fe2O3 :

maghemite

References

  • Abri A, Tajbakhsh M, Sadeghi A (2019) Adsorption of fluoride on a chitosan-based magnetic nanocomposite: equilibrium and kinetics studies. Water Supply 19(1):40–51

    Article  CAS  Google Scholar 

  • Adeleye A et al (2016) Engineered nanomaterials for water treatment and remediation: Costs, benefits, and applicability. Chem Eng J 286:640–662

    Article  CAS  Google Scholar 

  • Adeno F, Mulugeta E, Zewge F, Chebude Y (2014) Adsorptive removal of fluoride from water using nanoscale aluminium oxide hydroxide (AlOOH). Bull Chem Soc Ethiopia 28(2):215–227

    Article  Google Scholar 

  • Ahmed T et al (2014) Emerging nanotechnology-based methods for water purification: A review. Desalination Water Treatment 52(22-24):4089–4101

    Article  CAS  Google Scholar 

  • Aigbe U et al (2018a) A novel method for removal of Cr (VI) using polypyrrole magnetic nanocomposite in the presence of unsteady magnetic fields. Purific Technol 194:377–387

    Article  CAS  Google Scholar 

  • Aigbe U et al. (2018b) Removal of hexavalent chromium from wastewater using PPy/Fe3O4 magnetic nanocomposite influenced by rotating magnetic field from two pole three-phase induction motor. s.l.. J Phys: Conference Series

  • Aigbe U et al (2018c) Congo red dye removal under the influence of rotating magnetic field by polypyrrole magnetic nanocomposite. Desalination and Water Treatment 131:328–342

    Article  CAS  Google Scholar 

  • Aigbe U, Onyancha R, Ukhurebor K, Obodo K (2019) Removal of fluoride ions using a polypyrrole magnetic nanocomposite influenced by a rotating magnetic field. RSC Advances 10(1):595–609

    Article  Google Scholar 

  • Aigbe U, Osibote O (2020) A review of hexavalent chromium removal from aqueous solutions by sorption technique using nanomaterials. J Environ Chem Eng 8(6):104503

    Article  CAS  Google Scholar 

  • Aigbe U, Osibote O (2021) Carbon Derived Nanomaterials for the Sorption of Heavy Metals from Aqueous Solution: A Review. Environ Nanotechnol Monitor Manag 16:100578

    Article  Google Scholar 

  • Aigbe U et al (2021) Fly ash-based adsorbent for adsorption of heavy metals and dyes from aqueous solution: A review. J Mater Res Technol 14:2751–2774

    Article  CAS  Google Scholar 

  • Ajinkya N et al (2020) Magnetic iron oxide nanoparticle (IONP) synthesis to applications: Present and future. Materials 13(20):4644

    Article  CAS  Google Scholar 

  • Akafu T, Chimdi A, Gomoro K (2019) Removal of fluoride from drinking water by sorption using diatomite modified with aluminum hydroxide. J Analytical Methods Chem 2019:1–11

    Article  Google Scholar 

  • Akanyeti İ, Ferrari M (2016) Hybrid sorbent-ultrafiltration systems for fluoride removal from water. Separation Sci Technol 51(2):348–358

    Article  CAS  Google Scholar 

  • Alagumuthu G, Veeraputhiran V, Venkataraman R (2011) Fluoride sorption using cynodon dactylon-based activated carbon. Hemijska Industrija 65(1):23–35

    Article  CAS  Google Scholar 

  • Alemu S, Mulugeta E, Zewge F, Chandravanshi B (2014) Water defluoridation by aluminium oxide–manganese oxide composite material. Environ Technol 35(15):1893–1903

    Article  CAS  Google Scholar 

  • Al-Hakkani M, Gouda G, Hassan S (2021) A review of green methods for phyto-fabrication of hematite (α-Fe2O3) nanoparticles and their characterization, properties, and applications. Heliyon 7(1):e05806

    Article  Google Scholar 

  • Ali A, Atwa S, El-Giar E (2017) Development of magnetic nanoparticles for fluoride and organic matter removal from drinking water. In: Water Purification. s.l.: Academic Press, pp. 209–262

  • Ali A et al (2016b) Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnol Sci Appl 9:49–67

    Article  CAS  Google Scholar 

  • Alijani H, Shariatinia Z (2018) Synthesis of high growth rate SWCNTs and their magnetite cobalt sulfide nanohybrid as super-adsorbent for mercury removal. Chem Eng Res Design 129:132–149

    Article  CAS  Google Scholar 

  • Alimohammady M, Jahangiri M, Kiani F, Tahermansouri H (2017) A new modified MWCNTs with 3-aminopyrazole as a nanoadsorbent for Cd (II) removal from aqueous solutions. J Environ Chem Eng 5(4):3405–3417

    Article  CAS  Google Scholar 

  • Ali S, Thakur S, Sarkar A, Shekhar S (2016a) Worldwide contamination of water by fluoride. Environ Chem Lett 14(3):291–315

    Article  CAS  Google Scholar 

  • Amini M et al (2008) Statistical modeling of global geogenic fluoride contamination in groundwaters. Environ Sci Technol 42(10):3662–3668

    Article  CAS  Google Scholar 

  • Ammavasi N, Mariappan R (2018) Enhanced removal of hazardous fluoride from drinking water by using a smart material: magnetic iron oxide fabricated layered double hydroxide/cellulose composite. J Environ Chem Eng 6(4):5645–5654

    Article  CAS  Google Scholar 

  • Asgari B, Bowen J (2017) Gallium (III)-metalloporphyrin grafted magnetite nanoparticles for fluoride removal from aqueous solutions. Nat Products Chem Res 5(5)

  • Ashraf M, Peng W, Zare Y, Rhee K (2018) Effects of size and aggregation/agglomeration of nanoparticles on the interfacial/interphase properties and tensile strength of polymer nanocomposites. Nanoscale Res Lett 13(1):1–7

    Article  CAS  Google Scholar 

  • Avval Z et al (2020) Introduction of magnetic and supermagnetic nanoparticles in new approach of targeting drug delivery and cancer therapy application. Drug Metab Rev 52(1):157–184

    Article  Google Scholar 

  • Ayawei N, Ebelegi A, Wankasi D (2017) Modelling and interpretation of adsorption isotherms. Journal of Chemistry, 2017

  • Bajpai S, Jain A (2010) Removal of copper (II) from aqueous solution using spent tea leaves (STL) as a potential sorbent. SA J Radiol 36(3):221–228

    CAS  Google Scholar 

  • Baruah S, Khan M, Dutta J (2016) Perspectives and applications of nanotechnology in water treatment. Environ Chem Lett 14(1):1–14

    Article  CAS  Google Scholar 

  • Bassyouni M et al (2020) Utilization of carbon nanotubes in removal of heavy metals from wastewater: a review of the CNTs’ potential and current challenges. Appl Phys A 126(1):1–33

    Article  Google Scholar 

  • Bhateria R, Singh R (2019) A review on nanotechnological application of magnetic iron oxides for heavy metal removal. J Water Process Eng 31:100845

    Article  Google Scholar 

  • Blanco-Flores A et al (2018) Efficient fluoride removal using Al-Cu oxide nanoparticles supported on steel slag industrial waste solid. Environ Sci Pollution Res 25(7):6414–6428

    Article  CAS  Google Scholar 

  • Bora T, Dutta J (2014) Applications of nanotechnology in wastewater treatment-A review. J Nanosci Nanotechnol 14(1):613–626

    Article  CAS  Google Scholar 

  • Borgohain X, Boruah A, Sarma G, Rashid M (2020) Rapid and extremely high adsorption performance of porous MgO nanostructures for fluoride removal from water. J Mol Liquids 305:112799

    Article  CAS  Google Scholar 

  • Cai H et al (2015) Enhanced fluoride removal by loading Al/Zr onto carboxymethyl starch sodium: synergistic interactions between Al and Zr. RSC Advances 5(123):101819–101825

    Article  CAS  Google Scholar 

  • Campos E et al (2015) Synthesis, characterization and applications of iron oxide nanoparticles-A short review. J Aerospace Technol Manag 7(3):267–276

    Article  CAS  Google Scholar 

  • Carlos L, Einschlag F, González M, Mártire D (2013) Applications of magnetite nanoparticles for heavy metal removal from wastewater. Waste water-treatment technologies and recent analytical developments. s.l.:IntechOpen

  • Chen F et al (2019) Synthesis of Fe2O3-modified porous geopolymer microspheres for highly selective adsorption and solidification of F− from waste-water. Composites Part B: Eng 178:107497

    Article  CAS  Google Scholar 

  • Chen J, Liu B (2016) Kinetic study on the heavy metal Ions removal from aqueous solutions using multi-walled carbon nanotubes. Int Lett Chem Phys Astronomy 65:64–70

    Article  Google Scholar 

  • Chen J et al (2017a) Performance of polymer-based titanium and zirconium oxides composite adsorbent for simultaneous removal of phosphorus and fluorine from water. Huan Jing Ke Xue=. Huanjing Kexue 38(5):1947–1956

    Google Scholar 

  • Chen J et al (2017b) Adsorbent synthesis of polypyrrole/TiO2 for effective fluoride removal from aqueous solution for drinking water purification: Adsorbent characterization and adsorption mechanism. J Colloid Interface Sci 495(2017):44–52

    CAS  Google Scholar 

  • Chen P et al (2018) Efficient fluoride removal from aqueous solution by synthetic FeMgLa tri-metal nanocomposite and the analysis of its adsorption mechanism. J Alloys Compounds 738(2018):118–129

    Article  CAS  Google Scholar 

  • Chigondo M et al (2018a) Hydrous CeO2-Fe3O4 decorated polyaniline fibers nanocomposite for effective defluoridation of drinking water. J Colloid Interface Sci 532(2018):500–516

    Article  CAS  Google Scholar 

  • Chigondo M et al (2018b) Rapid high adsorption performance of hydrous cerium-magnesium oxides for removal of fluoride from water. J Mol Liquids 265(2018):496–509

    Article  CAS  Google Scholar 

  • Chinnakoti P et al (2017) Enhanced fluoride adsorption by nano crystalline γ-alumina: adsorption kinetics, isotherm modeling, and thermodynamic studies. Appl Water Sci 7(5):2413–2423

    Article  CAS  Google Scholar 

  • Chinnakoti P et al (2020) Titanate nanobelts–a promising nanosorbent for defluoridation of drinking water. Separation Sci Technol 55(6):1023–1035

    Article  CAS  Google Scholar 

  • Chowdhury S, Misra R, Kushwaha P, Das P (2011) Optimum sorption isotherm by linear and nonlinear methods for safranin onto alkali-treated rice husk. Bioremediation J 15(2):77–89

    Article  CAS  Google Scholar 

  • Cornell R, Schwertmann U (2003) The Iron Oxides: Structure, properties, reactions, occurences and uses. s.l.:Weinheim, Willey-VCH Verlag GmbH & Co

  • Danish M et al (2020) A systematic review of metal oxide applications for energy and environmental sustainability. Metals 10(12):1604

    Article  CAS  Google Scholar 

  • Dechnik J, Janiak C, De S (2016) Aluminium fumarate metal-organic framework: a super adsorbent for fluoride from water. J Hazardous Mater 303:10–20

    Article  Google Scholar 

  • Dehghani M et al (2020) Regression and mathematical modeling of fluoride ion adsorption from contaminated water using a magnetic versatile biomaterial & chelating agent: Insight on production & experimental approaches, mechanism and effects of potential interferers. J Mol Liquids 315(2020):113653

    Article  CAS  Google Scholar 

  • Demelash H, Beyene A, Abebe Z, Melese A (2019) Fluoride concentration in ground water and prevalence of dental fluorosis in Ethiopian Rift Valley: systematic review and meta-analysis. BMC Public Health 19(1):1–9

    Article  Google Scholar 

  • Dessalegne M, Zewge F, Diaz I (2017) Aluminum hydroxide supported on zeolites for fluoride removal from drinking water. J Chem Technol Biotechnol 92(3):605–613

    Article  CAS  Google Scholar 

  • Devi R et al (2014) Defluoridation of water using nano-magnesium oxide. J Exp Nanosci 9(5):512–524

    Article  CAS  Google Scholar 

  • Dewage N et al (2018) Fast nitrate and fluoride adsorption and magnetic separation from water on α-Fe2O3 and Fe3O4 dispersed on Douglas fir biochar. Bioresource Technol 263:258–265

    Article  Google Scholar 

  • Dey T et al (2018) Performance evaluation and effectiveness of different natural bio-adsorbents for wastewater treatment. Int J Current Eng Technol 8(5):2347–5161

    Google Scholar 

  • Dhillon A, Prasad S, Kumar D (2017a) Recent advances and spectroscopic perspectives in fluoride removal. Appl Spectroscopy Rev 52(3):175–230

    Article  CAS  Google Scholar 

  • Dhillon A, Soni S, Kumar D (2017b) Enhanced fluoride removal performance by Ce–Zn binary metal oxide: Adsorption characteristics and mechanism. J Fluorine Chem 199:67–76

    Article  CAS  Google Scholar 

  • Dimos V, Haralambous K, Malamis S (2012) A review on the recent studies for chromium species adsorption on raw and modified natural minerals. Critical Rev Environ Sci Technol 42(19):1977–2016

    Article  CAS  Google Scholar 

  • Dong C et al (2021) A novel and efficient metal oxide fluoride absorbent for drinking water safety and sustainable development. Sustainability 13(2):883

    Article  CAS  Google Scholar 

  • Duan C, Ma T, Wang J, Zhou Y (2020) Removal of heavy metals from aqueous solution using carbon-based adsorbents: A review. J Water Process Eng 37:101339

    Article  Google Scholar 

  • Ekka B, Dhaka R, Patel R, Dash P (2017) Fluoride removal in waters using ionic liquid-functionalized alumina as a novel adsorbent. J Cleaner Product 151:303–318

    Article  CAS  Google Scholar 

  • Elwakeel K et al (2020) Perspectives regarding metals/minerals-incorporated materials for water purification: With special focus on Cr (VI) removal. Mater Advances 1(6):1546–1574

    Article  CAS  Google Scholar 

  • Ezzeddine Z et al (2015) Divalent heavy metals adsorption onto different types of EDTA-modified mesoporous materials: Effectiveness and complexation rate. Microporous Mesoporous Mater 212:125–136

    Article  CAS  Google Scholar 

  • Fallah Z, Isfahani H, Tajbakhsh M (2020) Removal of fluoride ion from aqueous solutions by titania-grafted β-cyclodextrin nanocomposite. Environ Sci Pollut Res 27(3):3281–3294

    Article  CAS  Google Scholar 

  • Fan L et al (2013) Highly selective adsorption of lead ions by water-dispersible magnetic chitosan/graphene oxide composites. Coll Surfaces B: Biointerfaces 103:523–529

    Article  CAS  Google Scholar 

  • Gai W, Deng Z, Shi Y (2015) Fluoride removal from water using high-activity aluminum hydroxide prepared by the ultrasonic method. RSC Advances 5(102):84223–84231

    Article  CAS  Google Scholar 

  • Gao M et al (2020) Hierarchical hollow manganese-magnesium-aluminum ternary metal oxide for fluoride elimination. Environ Res 188:109735

    Article  CAS  Google Scholar 

  • Gao P et al (2016) Fabrication, performance and mechanism of MgO meso-/macroporous nanostructures for simultaneous removal of As(III) and F in a groundwater system. Environ Sci: Nano 3(6):1416–1424

    CAS  Google Scholar 

  • García-Padilla Á et al (2020) Evaluation of adsorption capacities of nanocomposites prepared from bean starch and montmorillonite. Sustainable Chem Pharm 17:100292

    Article  Google Scholar 

  • García-Sánchez J et al (2016) Modified natural magnetite with Al and La ions for the adsorption of fluoride ions from aqueous solutions. J Fluorine Chem 186:115–124

    Article  Google Scholar 

  • Ghaffari H et al (2017) Linear and nonlinear two-parameter adsorption isotherm modeling: A case-study. Int J Eng Sci 6(9):1–11

    Google Scholar 

  • Ghanbarian M, Ghanbarian M, Mahvi A, Tabatabaie T (2020) Enhanced fluoride removal over MgFe2O4–chitosan–CaAl nanohybrid: Response surface optimization, kinetic and isotherm study. Int J Biol Macromol 148:574–590

    Article  CAS  Google Scholar 

  • Ghosal P, Gupta A (2015) An insight into thermodynamics of adsorptive removal of fluoride by calcined Ca–Al–(NO3) layered double hydroxide. RSC Advances 5(128):105889–105900

    Article  CAS  Google Scholar 

  • Girma M, Zewge F, Chandravanshi B (2020) Fluoride removal from water using magnetic Iron Oxide/Aluminium hydroxide composite. SINET: Ethiopian J Sci 43(1):32–45

    Google Scholar 

  • Guerra F, Attia M, Whitehead D, Alexis F (2018) Nanotechnology for environmental remediation: Materials and applications. Molecules 23(7):1760

    Article  Google Scholar 

  • Habuda-Stanić M, Ravančić M, Flanagan A (2014) A review on adsorption of fluoride from aqueous solution. Materials 7(9):6317–6366

    Article  Google Scholar 

  • Hayati B et al (2016) Synthesis and characterization of PAMAM/CNT nanocomposite as a super-capacity adsorbent for heavy metal (Ni2+, Zn2+, As3+, Co2+) removal from wastewater. J Mol Liquids 224:1032–1040

    Article  CAS  Google Scholar 

  • He J et al (2017) A biocompatible and novelly-defined Al-HAP adsorption membrane for highly effective removal of fluoride from drinking water. J Colloid Interface Sci 490:97–107

    Article  CAS  Google Scholar 

  • He Y et al (2019) Enhanced fluoride removal from water by rare earth (La and Ce) modified alumina: Adsorption isotherms, kinetics, thermodynamics and mechanism. Sci Total Environ 688:184–198

    Article  CAS  Google Scholar 

  • Hiremath P, Theodore T (2017) Modelling of fluoride sorption from aqueous solution using green algae impregnated with zirconium by response surface methodology. Adsorption Sci Technol 35(1-2):194–217

    Article  CAS  Google Scholar 

  • Hu K, Dickson J (2006) Nanofiltration membrane performance on fluoride removal from water. J Membrane Sci 279(1-2):529–538

    Article  CAS  Google Scholar 

  • Iacob M et al (2019) Nanomaterials developed by processing iron coordination compounds for biomedical application. J Nanomater 2019:1–14

    Article  Google Scholar 

  • Ijumulana J et al (2020) Spatial analysis and GIS mapping of regional hotspots and potential health risk of fluoride concentrations in groundwater of northern Tanzania. Sci Total Environ 735:139584

    Article  CAS  Google Scholar 

  • Indermitte E, Saava A, Karro E (2009) Exposure to high fluoride drinking water and risk of dental fluorosis in Estonia. Int J Environ Res Public Health 6(2):710–721

    Article  CAS  Google Scholar 

  • Islam M, Mishra P, Patel R (2011) Fluoride adsorption from aqueous solution by a hybrid thorium phosphate composite. Chem Eng J 166(3):978–985

    Article  CAS  Google Scholar 

  • Jain M et al (2018) Development of iron oxide/activated carbon nanoparticle composite for the removal of Cr (VI), Cu (II), and Cd (II) ions from aqueous solution. Water Resour Industry 20:54–74

    Article  Google Scholar 

  • Jing F et al (2020) Recycling of iron and aluminum from drinking water treatment sludge for synthesis of a magnetic composite material (ALCS-Fe-Al) to remove fluoride from drinking water. Groundwater Sustainable Develop 11:100456

    Article  Google Scholar 

  • Jin Z et al (2015) Efficient removal of fluoride by hierarchical MgO microspheres: Performance and mechanism study. Appl Surface Sci 357:1080–1088

    Article  CAS  Google Scholar 

  • John Y, David V, Mmereki D (2018) A comparative study on removal of hazardous anions from water by adsorption: A review. Int J Chem Eng 2018:1–21

    Article  Google Scholar 

  • Kalia S et al (2014) Magnetic polymer nanocomposites for environmental and biomedical applications. Colloid Polym Sci 292(9):2025–2052

    Article  CAS  Google Scholar 

  • Kanaujia S, Singh B, Singh S (2015) Removal of fluoride from groundwater by carbonised Punica granatum carbon (“CPGC”) bio-adsorbent. J Geosci Environ Protect 3(4):1–9

    Article  Google Scholar 

  • Kang D, Yu X, Ge M (2017) Morphology-dependent properties and adsorption performance of CeO2 for fluoride removal. Chem Eng J 330:36–43

    Article  CAS  Google Scholar 

  • Kaushal A, Singh S (2017) Removal of heavy metals by nanoadsorbents: A review. J Environ Biotechnol Res 6(1):96–104

    Google Scholar 

  • Khan F et al (2020) Magnetic nanoadsorbents’ potential route for heavy metals removal—A review. Environ Sci Pollut Res 27(19):24342–24356

    Article  CAS  Google Scholar 

  • Khan S, Malik A (2019) Engineered nanomaterials for water decontamination and purification: From lab to products. J Hazardous Mater 363:295–308

    Article  CAS  Google Scholar 

  • Kumari S, Khan S (2017) Defluoridation technology for drinking water and tea by green synthesized Fe3O4/Al2O3 nanoparticles coated polyurethane foams for rural communities. Scientific Reports 7(1):1–12

    Article  Google Scholar 

  • Kumar P et al (2019) Treatment of fluoride-contaminated water. Rev Environ Chem Lett 17(4):1707–1726

    Article  CAS  Google Scholar 

  • Kwon J et al (2010) Removal of divalent heavy metals (Cd, Cu,Pb, and Zn) and arsenic (III) from aqueous solutions using scoria: kinetics and equilibria of sorption. J Hazardous Mater 174(1-3):307–313

    Article  CAS  Google Scholar 

  • Kyzas G, Matis K (2015) Nanoadsorbents for pollutants removal: A review. J Mol Liquids 203:159–168

    Article  CAS  Google Scholar 

  • Lininger C et al (2018) Energetics of lithium insertion into magnetite, defective magnetite, and maghemite. Chem Mater 30(21):7922–7937

    Article  CAS  Google Scholar 

  • Lin J et al (2018) Preparation of a novel CeO2/SiO2 adsorbent and its adsorption behavior for fluoride ion. Adsorption Sci Technol 36(1-2):743–761

    Article  CAS  Google Scholar 

  • Li R, Li T, Zhou Q (2020) Impact of titanium dioxide (TiO2) modification on its application to pollution treatment—A review. Catalysts 10(7):804

    Article  CAS  Google Scholar 

  • Liu J, Zhao P, Xu Y, Jia X (2019) Mg-Al mixed oxide adsorbent synthesized using FCT template for fluoride removal from drinking water. Bioinorganic Chem Appl 2019:1–12

    Article  Google Scholar 

  • Liu L et al (2016) One-step synthesis of magnetic iron–aluminum oxide/graphene oxide nanoparticles as a selective adsorbent for fluoride removal from aqueous solution. RSC Advances 6(13):10783–10791

    Article  CAS  Google Scholar 

  • Li Y, Zhang C, Jiang Y, Wang T (2018) Electrically enhanced adsorption and green regeneration for fluoride removal using Ti (OH) 4-loaded activated carbon electrodes. Chemosphere 200:554–560

    Article  CAS  Google Scholar 

  • Lu F, Astruc D (2018) Nanomaterials for removal of toxic elements from water. Coordination Chem Rev 356:147–164

    Article  CAS  Google Scholar 

  • Luo T et al. (2020) Application of iron oxide nanomaterials for the removal of heavy metals. In: Handbook of nanomaterials and nanocomposites for energy and environmental applications. s.l.:s.n., pp. 1-25

  • Machado A et al (2019) Applications Of nanotechnology in water treatment. Revista Conhecimento Online 1:3–15

    Article  Google Scholar 

  • Ma J, Ma Y, Yu F, Dai X (2018) Rotating magnetic field-assisted adsorption mechanism of pollutants on mechanically strong sodium alginate/graphene/L-cysteine beads in batch and fixed-bed column systems. Environ Sci Technol 52(23):13925–13934

    Article  CAS  Google Scholar 

  • Malik D, Jain C, Yadav A (2017) Removal of heavy metals from emerging cellulosic low-cost adsorbents: A review. Appl Water Sci 7(5):2113–2136

    Article  CAS  Google Scholar 

  • Markeb A, Alonso A, Sánchez A, Font X (2017) Adsorption process of fluoride from drinking water with magnetic core-shell Ce-Ti@ Fe3O4 and Ce-Ti oxide nanoparticles. Sci Total Environ 598:949–958

    Article  Google Scholar 

  • Ma W et al (2019) Enhanced removal of fluoride and arsenate ions from aqueous solution by magnetic Mg-Al composite oxides (Fe3O4@ Mg-Al–O). Inorganic Nano-Metal Chem 49(11):385–394

    Article  CAS  Google Scholar 

  • Minju N et al (2015) Removal of fluoride from aqueous media by magnesium oxide-coated nanoparticles. Desalinat Water Treatment 53(11):2905–2914

    Article  CAS  Google Scholar 

  • Mohan D, Pittman C Jr (2007) Arsenic removal from water/wastewater using adsorbents—A critical review. J Hazardous Mater 142(1-2):1–53

    Article  CAS  Google Scholar 

  • Mohapatra M, Anand S (2010) Synthesis and applications of nano-structured iron oxides/hydroxides–A review. Int J Eng Sci Technol 2(8):127–146

    Google Scholar 

  • Mohapatra M et al (2009) Review of fluoride removal from drinking water. J Environ Manag 91(1):67–77

    Article  CAS  Google Scholar 

  • Mohapatra M et al (2012) Mg-doped nano ferrihydrite—A new adsorbent for fluoride removal from aqueous solutions. Appl Surface Sci 258(10):4228–4236

    Article  CAS  Google Scholar 

  • Mohseni-Bandpi A et al (2015) Development of a novel magnetite–chitosan composite for the removal of fluoride from drinking water: adsorption modeling and optimization. RSC Advances 5(89):73279–73289

    Article  CAS  Google Scholar 

  • Mondal N, Kundu M (2016) Biosorption of fluoride from aqueous solution using lichen and its Ca-pretreated biomass. Water Conserv Sci Eng 1(3):143–160

    Article  Google Scholar 

  • Mondal P, George S (2015) Removal of fluoride from drinking water using novel adsorbent magnesia-hydroxyapatite. Water Air Soil Pollut 226(8):1–15

    Article  CAS  Google Scholar 

  • Mondal P, Purkait M (2019) Preparation and characterization of novel green synthesized iron–aluminium nanocomposite and studying its efficiency in fluoride removal. Chemosphere 235:391–402

    Article  CAS  Google Scholar 

  • Mukherjee A et al (2019) Efficient fluoride removal and dye degradation of contaminated water using Fe/Al/Ti oxide nanocomposite. ACS Omega 4(6):9686–9696

    Article  CAS  Google Scholar 

  • Mukhopadhyay K et al (2017) Synthesis and characterisation of cerium (IV)-incorporated hydrous iron (III) oxide as an adsorbent for fluoride removal from water. RSC Advances 7(42):26037–26051

    Article  CAS  Google Scholar 

  • Mukhopadhyay K, Naskar A, Ghosh U, Sasikumar P (2020) One-pot synthesis of β-cyclodextrin amended mesoporous cerium (IV) incorporated ferric oxide surface towards the evaluation of fluoride removal efficiency from contaminated water for point of use. J Hazardous Mater 384:121235

    Article  CAS  Google Scholar 

  • Nabizadeh R, Jahangiri-rad M, Sadjadi S (2015) Modelling the effects of competing anions on fluoride removal by functionalized polyacrylonitrile coated with iron oxide nanoparticles. South African J Chem 68:201–207

    Article  CAS  Google Scholar 

  • Nagy B et al (2017) Linear and nonlinear regression analysis for heavy metals removal using Agaricus bisporus macrofungus. Arabian J Chem 10:S3569–S3579

    Article  CAS  Google Scholar 

  • Nassar N (2012) Iron oxide nanoadsorbents for removal of various pollutants from wastewater: An overview. In: Application of adsorbents for water pollution control. s.l.:Bentham Science Publishers, pp. 81-118

  • Natarajan S et al (2019) Multifunctional magnetic iron oxide nanoparticles: diverse synthetic approaches, surface modifications, cytotoxicity towards biomedical and industrial applications. BMC Mater 1(1):1–22

    Google Scholar 

  • Nehra S, Raghav S, Kumar D (2020) Biomaterial functionalized cerium nanocomposite for removal of fluoride using central composite design optimization study. Environ Pollut 258:113773

    Article  CAS  Google Scholar 

  • Neyaz N, Siddiqui W, Nair K (2014) Application of surface functionalized iron oxide nanomaterials as a nanosorbents in extraction of toxic heavy metals from ground water: a review. Int J Environ Sci 4(4):472–483

    CAS  Google Scholar 

  • Oladoja N, Chen S, Drewes J, Helmreich B (2015) Characterization of granular matrix supported nano magnesium oxide as an adsorbent for defluoridation of groundwater. Chem Eng J 281:632–643

    Article  CAS  Google Scholar 

  • Onyancha R, Aigbe U, Ukhurebor K, Muchiri P (2021) Facile synthesis and applications of carbon nanotubes in heavy-metal remediation and biomedical fields: A comprehensive review. J Mol Struct 1238:130462

    Article  CAS  Google Scholar 

  • Oskam G (2006) Metal oxide nanoparticles: synthesis, characterization, and application. J Sol-Gel Sci Technol 37(3):161–164

    Article  CAS  Google Scholar 

  • Ouni L, Ramazani A, Fardood S (2019) An overview of carbon nanotubes role in heavy metals removal from wastewater. Front Chem Sci Eng 13(2):274–295

    Article  CAS  Google Scholar 

  • Pandi K, Periyasamy S, Viswanathan N (2017) Remediation of fluoride from drinking water using magnetic iron oxide coated hydrotalcite/chitosan composite. Int J Biol Macromol 104(Part B):1569–1577

    Article  CAS  Google Scholar 

  • Pandi K, Viswanathan N, Meenakshi S (2019) Hydrothermal synthesis of magnetic iron oxide encrusted hydrocalumite-chitosan composite for defluoridation studies. Int J Biol Macromol 132:600–605

    Article  CAS  Google Scholar 

  • Patel R et al (2019) 3D printed microchannel loaded with hematite nanoadsorbent for fluoride removal from water. Mater Lett 254:190–193

    Article  Google Scholar 

  • Peckham S, Awofeso N (2014) Water fluoridation: A critical review of the physiological effects of ingested fluoride as a public health intervention. Scientific World J 2014:1–10

    Article  Google Scholar 

  • Pillai P et al (2020) Iron oxide nanoparticles modified with ionic liquid as an efficient adsorbent for fluoride removal from groundwater. Environ Technol Innov 19:100842

    Article  Google Scholar 

  • Podgorski J, Labhasetwar P, Saha D, Berg M (2018) Prediction modeling and mapping of groundwater fluoride contamination throughout India. Environ Sci Technol 52(17):9889–9898

    Article  CAS  Google Scholar 

  • Popoola L (2019) Characterization and adsorptive behaviour of snail shell-rice husk (SS-RH) calcined particles (CPs) towards cationic dye. Heliyon 5(1):e01153

    Article  Google Scholar 

  • Prasad K, Amin Y, Selvaraj K (2014) Defluoridation using biomimetically synthesized nano zirconium chitosan composite: Kinetic and equilibrium studies. J Hazardous Mater 276:232–240

    Article  CAS  Google Scholar 

  • Prathna T, Sharma S, Kennedy M (2018) Application of iron oxide and iron oxide/alumina nanocomposites for arsenic and fluoride removal: A comparative study. Int J Theoretical Appl Nanotechnol 6(1):1–4

    CAS  Google Scholar 

  • Premathilaka R, Liyanagedera N (2019) Fluoride in drinking water and nanotechnological approaches for eliminating excess fluoride. J Nanotechnol 2019:1–15

    Article  Google Scholar 

  • Qu X, Alvarez P, Li Q (2013) Applications of nanotechnology in water and wastewater treatment. Water Res 47(12):3931–3946

    Article  CAS  Google Scholar 

  • Rasheed R, Meera V (2016) Synthesis of iron oxide nanoparticles coated sand by biological method and chemical method. Procedia Technol 24:210–216

    Article  Google Scholar 

  • Riahi F, Bagherzadeh M, Hadizadeh Z (2015) Modification of Fe3O4 superparamagnetic nanoparticles with zirconium oxide; preparation, characterization and its application toward fluoride removal. RSC Advances 5(88):72058–72068

    Article  CAS  Google Scholar 

  • Rivas B, Urbano B, Sánchez J (2018) Water-soluble and insoluble polymers, nanoparticles, nanocomposites, and hybrids with ability to remove hazardous inorganic pollutants in water. Front Chem 6:320

    Article  Google Scholar 

  • Roy A (2021) Microwave-assisted synthesis and characterization of γ-Al2O3/γ-Fe2O3 composite and evaluating its efficiency in fluoride removal. Colloids Surfaces A: Physicochem Eng Aspects 608:125574

    Article  CAS  Google Scholar 

  • Sadegh H et al (2017) The role of nanomaterials as effective adsorbents and their applications in wastewater treatment. J Nanostructure Chem 7(1):1–14

    Article  CAS  Google Scholar 

  • Sahoo S, Hota G (2018) Surface functionalization of GO with MgO/MgFe2O4 binary oxides: a novel magnetic nanoadsorbent for removal of fluoride ions. J Environ Chem Eng 6(2):2918–2931

    Article  CAS  Google Scholar 

  • Sahoo T, Prelot B (2020) Adsorption processes for the removal of contaminants from wastewater: The perspective role of nanomaterials and nanotechnology. In: Nanomaterials for the detection and removal of wastewater pollutants. s.l.:Elsevier, pp. 161-222

  • Santhosh C et al (2016) Role of nanomaterials in water treatment applications: A review. Chem Eng J 306:1116–1137

    Article  CAS  Google Scholar 

  • Sarkar S, Guibal E, Quignard F, SenGupta A (2012) Polymer-supported metals and metal oxide nanoparticles: synthesis, characterization, and applications. J Nanoparticle Res 14(2):1–24

    Article  Google Scholar 

  • Sarma G, Gupta S, Bhattacharyya K (2019) Nanomaterials as versatile adsorbents for heavy metal ions in water: A review. Environ Sci Pollut Res 26(7):6245–6278

    Article  CAS  Google Scholar 

  • Sennou A, Xiu S, Shahbazi A (2020) Comparative evaluation of hydrochars and pyrochars for phosphate adsorption from wastewater. In: Applications of biochar for environmental safety. s.l.:IntechOpen

  • Singh J, Singh P, Singh A (2016a) Fluoride ions vs removal technologies: A study. Arabian J Chem 9(6):815–824

    Article  CAS  Google Scholar 

  • Singh K, Lataye D, Wasewar K (2016b) Removal of fluoride from aqueous solution by using low-cost sugarcane bagasse: kinetic study and equilibrium isotherm analyses. J Hazardous Toxic Radioactive Waste 20(3):04015024

    Article  Google Scholar 

  • Sinha V, Chakma S (2020) Synthesis and evaluation of CMC-g-AMPS/Fe/Al/AC composite hydrogel and their use in fluoride removal from aqueous solution. Environ Technol Innov 17:100620

    Article  Google Scholar 

  • Sivashankar R, Sathya A, Vasantharaj K, Sivasubramanian V (2014) Magnetic composite an environmental super adsorbent for dye sequestration–A review. Environ Nanotechnol Monitor Manag 1:36–49

    Article  Google Scholar 

  • Speight J (2018) Chemical and Physical Properties. In: Reaction Mechanisms in Environmental Engineering: Analysis and Prediction. Butterworth-Heinemann, Wyoming, pp 81–114

    Chapter  Google Scholar 

  • Sudarni D et al (2021) Malachite green removal by activated potassium hydroxide clove leaves agro-waste biosorbent: Characterization, kinetics, Isotherms and thermodynamics studies. Adsorption Sci Technol 2021:1–15

    Article  Google Scholar 

  • Sujana M, Mohanty S (2010) Characterization and fluoride uptake studies of nano-scale iron oxide-hydroxide synthesized by microemulsion method. Int J Eng Sci Technol 2(8):1–12

    Google Scholar 

  • Sun B et al (2020) Flower-shaped nanoscale Na2Mg (CO3)(2): a promising adsorbent for fluoride removal from drinking water. Desalination Water Treatment 202:232–240

    Article  CAS  Google Scholar 

  • Sutton M, Kiersey R, Farragher L, Long J (2015) Health effects of water fluoridation. Health Research Board, Dublin

    Google Scholar 

  • Tang D, Zhang G (2016) Efficient removal of fluoride by hierarchical Ce–Fe bimetal oxides adsorbent: thermodynamics, kinetics and mechanism. Chem Eng J 283:721–729

    Article  CAS  Google Scholar 

  • Tao W et al (2020) Removal of fluoride from wastewater solution using Ce-AlOOH with oxalic acid as modification. J Hazardous Mater 384:121373

    Article  CAS  Google Scholar 

  • Thakre D et al (2010) Magnesium incorporated bentonite clay for defluoridation of drinking water. J Hazardous Mater 180(1-3):122–130

    Article  CAS  Google Scholar 

  • Thathsara S et al (2018) A novel Fe-La-Ce tri-metallic composite for the removal of fluoride ions from aqueous media. J Environ Manag 207:387–395

    Article  CAS  Google Scholar 

  • Thekkudan V et al (2016) Review on nanoadsorbents: a solution for heavy metal removal from wastewater. IET Nanobiotechnol 11(3):213–224

    Article  Google Scholar 

  • Theron J, Walker J, Cloete T (2008) Nanotechnology and water treatment: applications and emerging opportunities. Critical Rev Microbiol 34(1):43–69

    Article  CAS  Google Scholar 

  • Thole B (2013) Ground water contamination with fluoride and potential fluoride removal technologies for East and Southern Africa. Perspect Water Pollut, pp. 65-95

  • Tran H, You S, Hosseini-Bandegharaei A, Chao H (2017) Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: a critical review. Water Res 120:88–116

    Article  CAS  Google Scholar 

  • Tripathy S, Bersillon J, Gopal K (2006) Removal of fluoride from drinking water by adsorption onto alum-impregnated activated alumina. Separation Purification Technol 50(3):310–317

    Article  CAS  Google Scholar 

  • Ukhurebor K et al (2021) Effect of hexavalent chromium on the environment and removal techniques: A review. J Environ Manag 280:111809

    Article  CAS  Google Scholar 

  • Velazquez-Jimenez L et al (2015) Water defluoridation with special emphasis on adsorbents-containing metal oxides and/or hydroxides: A review. Separation Purification Technol 150:292–307

    Article  CAS  Google Scholar 

  • Vunain E, Mishra A, Mamba B (2016) Dendrimers, mesoporous silicas and chitosan-based nanosorbents for the removal of heavy-metal ions: A review. Int J Biol Macromol 86:570–586

    Article  CAS  Google Scholar 

  • Wang B et al (2019a) Alginate-based composites for environmental applications: A critical review. Critical Rev Environ Sci Technol 49(4):318–356

    Article  CAS  Google Scholar 

  • Wang F et al (2019b) Preparation of CeO2@ SiO2 microspheres by a non-sintering strategy for highly selective and continuous adsorption of fluoride ions from wastewater. ACS Sustainable Chem Eng 7(17):14716–14726

    Article  CAS  Google Scholar 

  • Wang J et al (2015) Synthesis and characterization of Mg–Fe–La trimetal composite as an adsorbent for fluoride removal. Chem Eng J 264:506–513

    Article  CAS  Google Scholar 

  • Wang L et al (2020) Rational design, synthesis, adsorption principles and applications of metal oxide adsorbents: A review. Nanoscale 12(8):4790–4815

    Article  CAS  Google Scholar 

  • Wang X et al (2012) Nanomaterials as sorbents to remove heavy metal ions in wastewater treatment. J Environ Anal Toxicol 2(7):154–158

    Article  Google Scholar 

  • Wang X et al (2019c) Synthesis and study of an efficient metal-organic framework adsorbent (MIL-96 (Al)) for fluoride removal from water. J Nanomater 2019:1–13

    Article  CAS  Google Scholar 

  • Wasewar K (2010) Adsorption of metals onto tea factory waste: A review. Int J Res Rev Appl Sci 3(3):303–322

    CAS  Google Scholar 

  • Wei L, Zietzschmann F, Rietveld L, van Halem D (2020) Fluoride removal by Ca-Al-CO3 layered double hydroxides at environmentally-relevant concentrations. Chemosphere 243:125307

    Article  CAS  Google Scholar 

  • Wendimu G, Zewge F, Mulugeta E (2017) Aluminium-iron-amended activated bamboo charcoal (AIAABC) for fluoride removal from aqueous solutions. J Water Process Eng 16:123–131

    Article  Google Scholar 

  • Wu S et al (2016) High efficient removal of fluoride from aqueous solution by a novel hydroxyl aluminum oxalate adsorbent. J Colloid Interface Sci 464:238–245

    Article  CAS  Google Scholar 

  • Wu T, Mao L, Wang H (2017) Adsorption of fluoride from aqueous solution by using hybrid adsorbent fabricated with Mg/Fe composite oxide and alginate via a facile method. J Fluorine Chem 200:8–17

    Article  CAS  Google Scholar 

  • Wu W, He Q, Jiang C (2008) Magnetic iron oxide nanoparticles: Synthesis and surface functionalization strategies. Nanoscale Res Lett 3(11):397–415

    Article  CAS  Google Scholar 

  • Wu Y et al (2019) Environmental remediation of heavy metal ions by novel-nanomaterials: A review. Environ Pollut 246:608–620

    Article  CAS  Google Scholar 

  • Xu J et al (2018) A review of functionalized carbon nanotubes and graphene for heavy metal adsorption from water: Preparation, application, and mechanism. Chemosphere 195:351–364

    Article  CAS  Google Scholar 

  • Xu L et al (2017) Adsorptive removal of fluoride from drinking water using porous starch loaded with common metal ions. Carbohydrate Polymers 160:82–89

    Article  CAS  Google Scholar 

  • Xu N, Li S, Li W, Liu Z (2020) Removal of fluoride by graphene oxide/alumina nanocomposite: Adsorbent preparation, characterization, adsorption performance and mechanisms. ChemistrySelect 5(6):1818–1828

    Article  CAS  Google Scholar 

  • Xu P et al (2012) Use of iron oxide nanomaterials in wastewater treatment: A review. Sci Total Environ 424:1–10

    Article  CAS  Google Scholar 

  • Yadav K et al (2018) A review of emerging adsorbents and current demand for defluoridation of water: bright future in water sustainability. Environ Int 111:80–108

    Article  CAS  Google Scholar 

  • Yadav M, Singh N (2017) Isotherm investigation for the sorption of fluoride onto Bio-F: comparison of linear and non-linear regression method. Appl Water Sci 7(8):4793–4800

    Article  CAS  Google Scholar 

  • Yaneva Z, Georgieva N (2012) Insights into congo red adsorption on agro-industrial materials- spectral, equilibrium, kinetic, thermodynamic, dynamic and desorption studies. A review. International Review of. Chem Eng 4(2):127–146

    Google Scholar 

  • Yang J et al (2019) Nanomaterials for the removal of heavy metals from wastewater. Nanomaterials 9(3):424

    Article  CAS  Google Scholar 

  • Yang W et al (2016) Performance and mass transfer of aqueous fluoride removal by a magnetic alumina aerogel. RSC Advances 6(114):112988–112999

    Article  CAS  Google Scholar 

  • Zahra Z, Habib Z, Chung S, Badshah M (2020) Exposure route of TiO2 NPs from industrial applications to wastewater treatment and their impacts on the agro-environment. Nanomaterials 10(8):1469

    Article  CAS  Google Scholar 

  • Zeng Y, Xue Y, Liang S, Zhang J (2017) Removal of fluoride from aqueous solution by TiO2 and TiO2–SiO2 nanocomposite. Chem Speciation Bioavailabil 29(1):25–32

    Article  CAS  Google Scholar 

  • Zhang C et al (2016a) Adsorption of drinking water fluoride on a micron-sized magnetic Fe3O4@ Fe-Ti composite adsorbent. Appl Surface Sci 363:507–515

    Article  CAS  Google Scholar 

  • Zhang C et al (2017) Synthesis and properties of a high-capacity iron oxide adsorbent for fluoride removal from drinking water. Appl Surface Sci 425:272–281

    Article  CAS  Google Scholar 

  • Zhang K et al (2016b) Development of a nanosphere adsorbent for the removal of fluoride from water. J Colloid Interface Sci 475:17–25

    Article  CAS  Google Scholar 

  • Zhang K et al (2015) Wide pH range for fluoride removal from water by MHS-MgO/MgCO3 adsorbent: Kinetic, thermodynamic and mechanism studies. J Colloid Interface Sci 446:194–202

    Article  CAS  Google Scholar 

  • Zhang Y, Jia Y (2016) Preparation of porous alumina hollow spheres as an adsorbent for fluoride removal from water with low aluminum residual. Ceramics Int 42(15):17472–17481

    Article  CAS  Google Scholar 

  • Zhao X et al (2010) Removal of fluoride from aqueous media by Fe3O4@Al(OH)3 magnetic nanoparticles. J Hazardous Mater 173(1-3):102–109

    Article  CAS  Google Scholar 

  • Zhou J et al (2018) Highly selective and efficient removal of fluoride from ground water by layered Al-Zr-La Tri-metal hydroxide. Appl Surface Sci 435:920–927

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are sincerely grateful to the Cape Peninsula University of Technology, Cape Town, and the authors whose research publications were used for this review study.

Author information

Authors and Affiliations

Authors

Contributions

The listed authors have made a significant, explicit, and academic input to this work, and permitted it for publication. The conceptualization, structuring and writing of the manuscript were by Uyiosa Osagie Aigbe, and while the revision and English editing of the manuscript were by Otolorin Adelaja Osibote.

Corresponding author

Correspondence to Uyiosa Osagie Aigbe.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Tito Roberto Cadaval Jr

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Fluoride decontamination process from wastewater using sorption procedures.

• Ion exchange, electrostatic interaction and complexation mechanism control the F- sorption process.

• Most sorption processes were controlled by the monolayer sorption and multilayer sorption processes

• The sorption capacity for F- ions were in the order of Al oxides >Ce oxides > Fe oxides > Mg oxides> Ti oxides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aigbe, U.O., Osibote, O.A. Fluoride ions sorption using functionalized magnetic metal oxides nanocomposites: a review. Environ Sci Pollut Res 29, 9640–9684 (2022). https://doi.org/10.1007/s11356-021-17571-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-17571-7

Keywords

Navigation