Skip to main content
Log in

Magnetic nanoadsorbents’ potential route for heavy metals removal—a review

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Due to the rapid growth in the heavy metal-based industries, their effluent and local dumping have created significant environmental issues. In the past, typically, removal of heavy metals was handled by reverse osmosis and ion exchange techniques, but these methods have many disadvantages. Therefore, extensive work into the development of improved techniques has increased, especially for heavy metal removal. Many countries are currently researching new materials and techniques based on nanotechnology for various applications that involve extracting heavy metals from different water sources such as wastewater, groundwater, drinking water and surface water. Nanotechnology provides the possibility of enhancing existing techniques to tackle problems more efficiently. The development in nanotechnology has led to the discovery of many new materials such as magnetic nanoparticles. These nanoparticles demonstrate excellent properties such as surface-volume ratio, higher surface area, low toxicity and easy separation. Besides, magnetic nanoparticles can be easily and efficiently recovered after adsorption compared with other typical adsorbents. This review mainly emphasises on the efficiency of heavy metal removal using magnetic nanoadsorbent from aqueous solution. In addition, an in-depth analysis of the synthesis, characterisation and modification approaches of magnetic nanoparticles is systematically presented. Furthermore, future opportunities and challenges of using magnetic particles as an adsorbent for the removal of heavy metals are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdullah NH, Shameli K, Abdullah EC, Abdullah LC (2019) Solid matrices for fabrication of magnetic iron oxide nanocomposites: synthesis, properties, and application for the adsorption of heavy metal ions and dyes. Compos Part B 162:538–568

    CAS  Google Scholar 

  • Ahmad T, Danish M (2018) Prospects of banana waste utilization in wastewater treatment: a review. J Environ Manag 206:330–348

    CAS  Google Scholar 

  • Akrami A, Niazi A (2016) Synthesis of maghemite nanoparticles and its application for removal of Titan yellow from aqueous solutions using full factorial design. Desalin Water Treat 57(47):22618–22631

    CAS  Google Scholar 

  • Ali, A., M. Z. Hira Zafar, I. ul Haq, A. R. Phull, J. S. Ali and A. Hussain (2016). Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnol Sci Appl 9: 49

  • Aliramaji S, Zamanian A, Sohrabijam Z (2015) Characterization and synthesis of magnetite nanoparticles by innovative sonochemical method. Procedia Mater Sci 11:265–269

    CAS  Google Scholar 

  • Alloway BJ (2013) Sources of heavy metals and metalloids in soils. Springer, Heavy metals in soils, pp 11–50

    Google Scholar 

  • Babel S and Kurniawan T (2005). Various treatment technologies to remove arsenic and mercury from contaminated groundwater: an overview. Southeast Asian Water Environment 1

  • Badruddoza A, Tay A, Tan P, Hidajat K, Uddin M (2011) Carboxymethyl-β-cyclodextrin conjugated magnetic nanoparticles as nano-adsorbents for removal of copper ions: synthesis and adsorption studies. J Hazard Mater 185(2–3):1177–1186

    CAS  Google Scholar 

  • Barakat M (2011) New trends in removing heavy metals from industrial wastewater. Arab J Chem 4(4):361–377

    CAS  Google Scholar 

  • Basheer AA (2018) New generation nano-adsorbents for the removal of emerging contaminants in water. J Mol Liq 261:583–593

    CAS  Google Scholar 

  • Bhateria R, Singh R (2019) A review on nanotechnological application of magnetic iron oxides for heavy metal removal. J Water Process Eng 31:100845

    Google Scholar 

  • Bhatnagar A, Sillanpää M, Witek-Krowiak A (2015) Agricultural waste peels as versatile biomass for water purification–a review. Chem Eng J 270:244–271

    CAS  Google Scholar 

  • Chakravarti A, Chowdhury S, Chakrabarty S, Chakrabarty T, Mukherjee D (1995) Liquid membrane multiple emulsion process of chromium (VI) separation from waste waters. Colloids Surf A Physicochem Eng Asp 103(1–2):59–71

    CAS  Google Scholar 

  • Chen F, Gao Q, Hong G, Ni J (2008) Synthesis and characterization of magnetite dodecahedron nanostructure by hydrothermal method. J Magn Magn Mater 320(11):1775–1780

    CAS  Google Scholar 

  • Chen R, Zhi C, Yang H, Bando Y, Zhang Z, Sugiur N, Golberg D (2011) Arsenic (V) adsorption on Fe3O4 nanoparticle-coated boron nitride nanotubes. J Colloid Interface Sci 359(1):261–268

    CAS  Google Scholar 

  • Cheng Z, Van Geen A, Louis R, Nikolaidis N, Bailey R (2005) Removal of methylated arsenic in groundwater with iron filings. Environ Sci Technol 39(19):7662–7666

    CAS  Google Scholar 

  • Chou C-M, Lien H-L (2011) Dendrimer-conjugated magnetic nanoparticles for removal of zinc (II) from aqueous solutions. J Nanopart Res 13(5):2099–2107

    CAS  Google Scholar 

  • Cruz IF, Freire C, Araújo JP, Pereira C, Pereira AM (2018) Multifunctional ferrite nanoparticles: from current trends toward the future. Elsevier, Magnetic Nanostructured Materials, pp 59–116

    Google Scholar 

  • Dalpozzo R (2015) Magnetic nanoparticle supports for asymmetric catalysts. Green Chem 17(7):3671–3686

    CAS  Google Scholar 

  • De Carvalho J, De Medeiros S, Morales M, Dantas A, Carriço A (2013) Synthesis of magnetite nanoparticles by high energy ball milling. Appl Surf Sci 275:84–87

    Google Scholar 

  • Di Marco M, Sadun C, Port M, Guilbert I, Couvreur P, Dubernet C (2007) Physicochemical characterization of ultrasmall superparamagnetic iron oxide particles (USPIO) for biomedical application as MRI contrast agents. Int J Nanomedicine 2(4):609–622

    Google Scholar 

  • Dung T, Danh T, Hoa L, Chien D, Duc N (2009) Structural and magnetic properties of starch-coated magnetite nanoparticles. J Exp Nanosci 4(3):259–267

    CAS  Google Scholar 

  • El-Latif MMA, Ibrahim AM, Showman MS, Hamide RRA (2013) Alumina/Iron Oxide nano composite for cadmium ions removal from aqueous solutions. International Journal of Nonferrous Metallurgy 2(02):47

    Google Scholar 

  • Erathodiyil N, Ying JY (2011) Functionalization of inorganic nanoparticles for bioimaging applications. Acc Chem Res 44(10):925–935

    CAS  Google Scholar 

  • Esakkimuthu T, Sivakumar D, Akila S (2014) Application of nanoparticles in wastewater treatment. Pollut Res 33(03):567–571

    CAS  Google Scholar 

  • Fang C, Xiong Z, Qin H, Huang G, Liu J, Ye M, Feng S, Zou H (2014) One-pot synthesis of magnetic colloidal nanocrystal clusters coated with chitosan for selective enrichment of glycopeptides. Anal Chim Acta 841:99–105

    CAS  Google Scholar 

  • Feng L, Cao M, Ma X, Zhu Y, Hu C (2012) Superparamagnetic high-surface-area Fe3O4 nanoparticles as adsorbents for arsenic removal. J Hazard Mater 217:439–446

    Google Scholar 

  • Frey NA, Peng S, Cheng K, Sun S (2009) Magnetic nanoparticles: synthesis, functionalization, and applications in bioimaging and magnetic energy storage. Chem Soc Rev 38(9):2532–2542

    CAS  Google Scholar 

  • Fulekar M, Singh A, Bhaduri AM (2009) Genetic engineering strategies for enhancing phytoremediation of heavy metals. Afr J Biotechnol 8(4)

  • Ghafoor S, Ata S (2017) Synthesis of carboxyl-modified Fe3O4@ SiO2 nanoparticles and their utilization for the remediation of cadmium and nickel from aqueous solution. J Chil Chem Soc 62(3):3588–3592

    CAS  Google Scholar 

  • Ghiaci M, Kia R, Abbaspur A, Seyedeyn-Azad F (2004) Adsorption of chromate by surfactant-modified zeolites and MCM-41 molecular sieve. Sep Purif Technol 40(3):285–295

    CAS  Google Scholar 

  • Ghosh Chaudhuri R, Paria S (2012) Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem Rev 112(4):2373–2433

    CAS  Google Scholar 

  • Giménez J, Martinez M, de Pablo J, Rovira M, Duro L (2007) Arsenic sorption onto natural hematite, magnetite, and goethite. J Hazard Mater 141(3):575–580

    Google Scholar 

  • Goon IY, Zhang C, Lim M, Gooding JJ, Amal R (2010) Controlled fabrication of polyethylenimine-functionalized magnetic nanoparticles for the sequestration and quantification of free Cu2+. Langmuir 26(14):12247–12252

    CAS  Google Scholar 

  • Gupta VK, Gupta M, Sharma S (2001) Process development for the removal of lead and chromium from aqueous solutions using red mud—an aluminium industry waste. Water Res 35(5):1125–1134

    CAS  Google Scholar 

  • Gupta VK, Jain R, Malathi S, Nayak A (2010) Adsorption–desorption studies of indigocarmine from industrial effluents by using deoiled mustard and its comparison with charcoal. J Colloid Interface Sci 348(2):628–633

    CAS  Google Scholar 

  • Hao R, Xing R, Xu Z, Hou Y, Gao S, Sun S (2010) Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles. Adv Mater 22(25):2729–2742

    CAS  Google Scholar 

  • Hernández-Hernández AA, Álvarez-Romero GA, Castañeda-Ovando A, Mendoza-Tolentino Y, Contreras-López E, Galán-Vidal CA, Páez-Hernández ME (2018) Optimization of microwave-solvothermal synthesis of Fe3O4 nanoparticles. Coating, modification, and characterization. Mater Chem Phys 205:113–119

    Google Scholar 

  • Hokkanen S, Repo E, Lou S, Sillanpää M (2015) Removal of arsenic (V) by magnetic nanoparticle activated microfibrillated cellulose. Chem Eng J 260:886–894

    CAS  Google Scholar 

  • Hua M, Zhang S, Pan B, Zhang W, Lv L, Zhang Q (2012) Heavy metal removal from water/wastewater by nanosized metal oxides: a review. J Hazard Mater 211:317–331

    Google Scholar 

  • Huang L, He M, Chen B, Hu B (2016a) A mercapto functionalized magnetic Zr-MOF by solvent-assisted ligand exchange for Hg 2+ removal from water. J Mater Chem A 4(14):5159–5166

    CAS  Google Scholar 

  • Huang S, Ma C, Liao Y, Min C, Du P, Jiang Y (2016b) Removal of mercury (II) from aqueous solutions by adsorption on poly (1-amino-5-chloroanthraquinone) nanofibrils: equilibrium, kinetics, and mechanism studies. J Nanomater 2016

  • Huang Y, Keller AA (2015) EDTA functionalized magnetic nanoparticle sorbents for cadmium and lead contaminated water treatment. Water Res 80:159–168

    CAS  Google Scholar 

  • Huh Y-M, Jun Y-w, Song H-T, Kim S, Choi J-s, Lee J-H, Yoon S, Kim K-S, Shin J-S, Suh J-S (2005) In vivo magnetic resonance detection of cancer by using multifunctional magnetic nanocrystals. J Am Chem Soc 127(35):12387–12391

    CAS  Google Scholar 

  • Karami H (2013) Heavy metal removal from water by magnetite nanorods. Chem Eng J 219:209–216

    CAS  Google Scholar 

  • Khajeh M, Laurent S, Dastafkan K (2013a) Nanoadsorbents: classification, preparation, and applications (with emphasis on aqueous media). Chem Rev 113(10):7741

    Google Scholar 

  • Khajeh M, Laurent S, Dastafkan K (2013b) Nanoadsorbents: classification, preparation, and applications (with emphasis on aqueous media). Chem Rev 113(10):7735

    Google Scholar 

  • Khan K, Rehman S, Rahman HU, Khan Q (2014) Synthesis and application of magnetic nanoparticles. Gonzalez Estevez JM. Nanomagnetism. One Central Press (OCP): UK

  • Kobielska PA, Howarth AJ, Farha OK, Nayak S (2018) Metal–organic frameworks for heavy metal removal from water. Coord Chem Rev 358:92–107

    CAS  Google Scholar 

  • Koduru JR, Karri RR, Mubarak NM (2019) Smart materials, magnetic graphene oxide-based nanocomposites for sustainable water purification. Springer International Publishing, Sustainable Polymer Composites and Nanocomposites, pp 759–781

    Google Scholar 

  • Kumar R, Chawla J (2014) Removal of cadmium ion from water/wastewater by nano-metal oxides: a review. Water Qual Expo Health 5(4):215–226

    CAS  Google Scholar 

  • Kyzas GZ, Bikiaris DN (2015) Recent modifications of chitosan for adsorption applications: a critical and systematic review. Marine drugs 13(1):312–337

    Google Scholar 

  • Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108(6):2064–2110

    CAS  Google Scholar 

  • Lee H, Lee E, Kim DK, Jang NK, Jeong YY, Jon S (2006) Antibiofouling polymer-coated superparamagnetic iron oxide nanoparticles as potential magnetic resonance contrast agents for in vivo cancer imaging. J Am Chem Soc 128(22):7383–7389

    CAS  Google Scholar 

  • Li H, Chi Z, Li J (2014) Covalent bonding synthesis of magnetic graphene oxide nanocomposites for Cr (III) removal. Desalin Water Treat 52(10–12):1937–1946

    CAS  Google Scholar 

  • Li H, Li Z, Liu T, Xiao X, Peng Z, Deng L (2008) A novel technology for biosorption and recovery hexavalent chromium in wastewater by bio-functional magnetic beads. Bioresour Technol 99(14):6271–6279

    CAS  Google Scholar 

  • Lin S, Lu D, Liu Z (2012) Removal of arsenic contaminants with magnetic γ-Fe2O3 nanoparticles. Chem Eng J 211:46–52

    Google Scholar 

  • Lingamdinne LP, Koduru JR, Karri RR (2019) A comprehensive review of applications of magnetic graphene oxide based nanocomposites for sustainable water purification. J Environ Manag 231:622–634

    CAS  Google Scholar 

  • Lisjak D, Mertelj A (2018) Anisotropic magnetic nanoparticles: a review of their properties, syntheses and potential applications. Prog Mater Sci

  • Lu H, Qiao X, Wang W, Tan F, Sun F, Xiao Z, Chen J (2015) Effective removal of cadmium ions from aqueous solution using chitosan-stabilized nano zero-valent iron. Desalin Water Treat 56(1):256–265

    CAS  Google Scholar 

  • Lu R, Tao K, Sun K, Dou H, Xu B (2010) Facile synthesis of magnetic microcapsules by synchronous formation of magnetite nanoparticles. Colloid Polym Sci 288(3):353–357

    CAS  Google Scholar 

  • Lu S, Cheng G, Zhang H, Pang X (2006) Preparation and characteristics of tryptophan-imprinted Fe3O4/P (TRIM) composite microspheres with magnetic susceptibility by inverse emulsion–suspension polymerization. J Appl Polym Sci 99(6):3241–3250

    CAS  Google Scholar 

  • Lüdtke-Buzug K, Biederer S, Sattel T, Knopp T and Buzug TM (2009) Preparation and characterization of dextran-covered Fe 3 O 4 nanoparticles for magnetic particle imaging. 4th European Conference of the International Federation for Medical and Biological Engineering, Springer

  • Lunge S, Singh S, Sinha A (2014) Magnetic iron oxide (Fe3O4) nanoparticles from tea waste for arsenic removal. J Magn Magn Mater 356:21–31

    CAS  Google Scholar 

  • Magnacca G, Allera A, Montoneri E, Celi L, Benito DE, Gagliardi LG, Gonzalez MC, Mártire DO, Carlos L (2014) Novel magnetite nanoparticles coated with waste-sourced biobased substances as sustainable and renewable adsorbing materials. ACS Sustain Chem Eng 2(6):1518–1524

    CAS  Google Scholar 

  • Mahdavi M, Ahmad MB, Haron MJ, Namvar F, Nadi B, Rahman MZA, Amin J (2013) Synthesis, surface modification and characterisation of biocompatible magnetic iron oxide nanoparticles for biomedical applications. Molecules 18(7):7533–7548

    CAS  Google Scholar 

  • Mahdavian AR, Mirrahimi MA-S (2010) Efficient separation of heavy metal cations by anchoring polyacrylic acid on superparamagnetic magnetite nanoparticles through surface modification. Chem Eng J 159(1–3):264–271

    CAS  Google Scholar 

  • Mahmoudi M, Sant S, Wang B, Laurent S, Sen T (2011) Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy. Adv Drug Deliv Rev 63(1–2):24–46

    CAS  Google Scholar 

  • Mamani J, Costa-Filho AJD, Cornejo DR, Vieira E, Gamarra L (2013) Synthesis and characterization of magnetite nanoparticles coated with lauric acid. Mater Charact 81:28–36

    CAS  Google Scholar 

  • Mamani JB, Gamarra LF, Brito GEDS (2014) Synthesis and characterization of Fe3O4 nanoparticles with perspectives in biomedical applications. Mater Res 17(3):542–549

    CAS  Google Scholar 

  • Mazarío E, Mayoral A, Salas E, Menéndez N, Herrasti P, Sánchez-Marcos J (2016) Synthesis and characterization of manganese ferrite nanoparticles obtained by electrochemical/chemical method. Mater Des 111:646–650

    Google Scholar 

  • Mohammed L, Gomaa HG, Ragab D, Zhu J (2017) Magnetic nanoparticles for environmental and biomedical applications: a review. Particuology 30:1–14

    CAS  Google Scholar 

  • Mohapatra S, Nguyen TA, Nguyen-Tri P (2018) Noble metal-metal oxide hybrid nanoparticles: fundamentals and applications. Elsevier

  • Nemati F, Heravi MM, Rad RS (2012) Nano-Fe3O4 encapsulated-silica particles bearing sulfonic acid groups as a magnetically separable catalyst for highly efficient Knoevenagel condensation and Michael addition reactions of aromatic aldehydes with 1, 3-cyclic diketones. Chin J Catal 33(11–12):1825–1831

    CAS  Google Scholar 

  • Nisticò R, Celi LR, Prevot AB, Carlos L, Magnacca G, Zanzo E, Martin M (2018) Sustainable magnet-responsive nanomaterials for the removal of arsenic from contaminated water. J Hazard Mater 342:260–269

    Google Scholar 

  • Ojemaye MO, Okoh OO, Okoh AI (2017a) Performance of NiFe2O4-SiO2-TiO2 magnetic photocatalyst for the effective photocatalytic reduction of Cr (VI) in aqueous solutions. J Nanomater 2017

  • Ojemaye MO, Okoh OO, Okoh AI (2017b) Surface modified magnetic nanoparticles as efficient adsorbents for heavy metal removal from wastewater: Progress and prospects. Mater Express 7(6):439–456

    CAS  Google Scholar 

  • Osaka T, Matsunaga T, Nakanishi T, Arakaki A, Niwa D, Iida H (2006) Synthesis of magnetic nanoparticles and their application to bioassays. Anal Bioanal Chem 384(3):593–600

    CAS  Google Scholar 

  • Özer A, Altundoğan H, Erdem M, Tümen F (1997) A study on the Cr (VI) removal from aqueous solutions by steel wool. Environ Pollut 97(1–2):107–112

    Google Scholar 

  • Palkar V (1999) Sol-gel derived nanostructured γ-alumina porous spheres as an adsorbent in liquid chromatography. Nanostruct Mater 11(3):369–374

    CAS  Google Scholar 

  • Prabhu Y, Rao KV, Kumari BS, Kumar VSS, Pavani T (2015) Synthesis of Fe 3 O 4 nanoparticles and its antibacterial application. Int Nano Lett 5(2):85–92

    CAS  Google Scholar 

  • Rahman MA, Hasegawa H (2011) High levels of inorganic arsenic in rice in areas where arsenic-contaminated water is used for irrigation and cooking. Sci Total Environ 409(22):4645–4655

    CAS  Google Scholar 

  • Ranjan D, Talat M, Hasan S (2009) Biosorption of arsenic from aqueous solution using agricultural residue ‘rice polish’. J Hazard Mater 166(2–3):1050–1059

    CAS  Google Scholar 

  • Rasoulzadeh H, Dehghani MH, Mohammadi AS, Karri RR, Nabizadeh R, Nazmara S, Kim K.-H and Sahu J.N (2019) Parametric modelling of Pb (II) adsorption onto chitosan-coated Fe3O4 particles through RSM and DE hybrid evolutionary optimization framework. J Mol Liq: 111893

  • Rebuttini V (2014). Functional iron oxide-based hybrid nanostructures.

    Google Scholar 

  • Rishton S, Lu Y, Altman R, Marley A, Bian X, Jahnes C, Viswanathan R, Xiao G, Gallagher W, Parkin S (1997) Magnetic tunnel junctions fabricated at tenth-micron dimensions by electron beam lithography. Microelectron Eng 35(1–4):249–252

    CAS  Google Scholar 

  • Roy A, Bhattacharya J (2013) A binary and ternary adsorption study of wastewater Cd (II), Ni (II) and Co (II) by γ-Fe2O3 nanotubes. Sep Purif Technol 115:172–179

    CAS  Google Scholar 

  • Roy E, Patra S, Karfa P, Madhuri R, Sharma PK (2017) Role of magnetic nanoparticles in providing safe and clean water to each individual. Springer, Complex Magnetic Nanostructures, pp 281–316

    Google Scholar 

  • Ruthiraan M, Mubarak NM, Abdullah EC, Khalid M, Nizamuddin S, Walvekar R, Karri RR (2019) An overview of magnetic material: preparation and adsorption removal of heavy metals from wastewater. Magnetic Nanostructures, Springer, Cham, pp 131–159

    Google Scholar 

  • Sadegh H, Ali GA, Gupta VK, Makhlouf ASH, Shahryari-ghoshekandi R, Nadagouda MN, Sillanpää M, Megiel E (2017) The role of nanomaterials as effective adsorbents and their applications in wastewater treatment. J Nanostructure Chem 7(1):1–14

    CAS  Google Scholar 

  • Sadeghi S, Azhdari H, Arabi H, Moghaddam AZ (2012) Surface modified magnetic Fe3O4 nanoparticles as a selective sorbent for solid phase extraction of uranyl ions from water samples. J Hazard Mater 215:208–216

    Google Scholar 

  • Sahu JN, Acharya J, Meikap BC (2010) Optimization of production conditions for activated carbons from tamarind wood by zinc chloride using response surface methodology. Bioresour Technol 101(6):1974–1982

    CAS  Google Scholar 

  • Sahu JN, Karri RR, Zabed HM, Shams S, Qi X (2019) Current perspectives and future prospects of nano-biotechnology in wastewater treatment. Sep Purif Rev:1–20

  • Saravanan P, Vinod V, Sreedhar B, Sashidhar R (2012) Gum kondagogu modified magnetic nano-adsorbent: an efficient protocol for removal of various toxic metal ions. Mater Sci Eng C 32(3):581–586

    CAS  Google Scholar 

  • Shariati S, Khabazipour M, Safa F (2017) Synthesis and application of amine functionalized silica mesoporous magnetite nanoparticles for removal of chromium (VI) from aqueous solutions. J Porous Mater 24(1):129–139

    CAS  Google Scholar 

  • Shete P, Patil R, Tiwale B, Pawar S (2015) Water dispersible oleic acid-coated Fe3O4 nanoparticles for biomedical applications. J Magn Magn Mater 377:406–410

    CAS  Google Scholar 

  • Siegel FR (2002) Environmental geochemistry of potentially toxic metals. Springer

  • Singh N, Nagpal G and Agrawal S (2018a) Water purification by using adsorbents: a review. Environmental Technology & Innovation

  • Singh NB, Nagpal G, Agrawal S, Rachna (2018b) Water purification by using adsorbents: a review. Environ Technol Innov 11:187–240

    Google Scholar 

  • Singh P, Tiwary D, Sinha I (2015) Chromium removal from aqueous media by superparamagnetic starch functionalized maghemite nanoparticles. J Chem Sci 127(11):1967–1976

    CAS  Google Scholar 

  • Singh S, Barick K, Bahadur D (2011) Surface engineered magnetic nanoparticles for removal of toxic metal ions and bacterial pathogens. J Hazard Mater 192(3):1539–1547

    CAS  Google Scholar 

  • Sonti SV, Bose A (1995) Cell separation using protein-A-coated magnetic nanoclusters. J Colloid Interface Sci 170(2):575–585

    CAS  Google Scholar 

  • Stanicki D, Vander Elst L, Muller RN, Laurent S (2015) Synthesis and processing of magnetic nanoparticles. Curr Opin Chem Eng 8:7–14

    Google Scholar 

  • Sun Z, Guo D, Li H, Zhang L, Yang B, Yan S (2015) Multifunctional Fe 3 O 4@ SiO 2 nanoparticles for selective detection and removal of Hg 2+ ion in aqueous solution. RSC Adv 5(15):11000–11008

    CAS  Google Scholar 

  • Sureshkumar V, Daniel SK, Ruckmani K, Sivakumar M (2016) Fabrication of chitosan–magnetite nanocomposite strip for chromium removal. Appl Nanosci 6(2):277–285

    CAS  Google Scholar 

  • Tapeinos C (2018) Magnetic nanoparticles and their bioapplications. Elsevier, Smart nanoparticles for biomedicine, pp 131–142

    Google Scholar 

  • Thanh NT, Green LA (2010) Functionalisation of nanoparticles for biomedical applications. Nano Today 5(3):213–230

    CAS  Google Scholar 

  • Tombácz E, Turcu R, Socoliuc V, Vékás L (2015) Magnetic iron oxide nanoparticles: recent trends in design and synthesis of magnetoresponsive nanosystems. Biochem Biophys Res Commun 468(3):442–453

    Google Scholar 

  • Tucker-Schwartz AK, Farrell RA, Garrell RL (2011) Thiol–ene click reaction as a general route to functional trialkoxysilanes for surface coating applications. J Am Chem Soc 133(29):11026–11029

    CAS  Google Scholar 

  • Tuutijärvi T, Lu J, Sillanpää M, Chen G (2009) As (V) adsorption on maghemite nanoparticles. J Hazard Mater 166(2–3):1415–1420

    Google Scholar 

  • Wang J, Zheng S, Shao Y, Liu J, Xu Z, Zhu D (2010) Amino-functionalized Fe3O4@ SiO2 core–shell magnetic nanomaterial as a novel adsorbent for aqueous heavy metals removal. J Colloid Interface Sci 349(1):293–299

    CAS  Google Scholar 

  • Wanna Y, Chindaduang A, Tumcharern G, Phromyothin D, Porntheerapat S, Nukeaw J, Hofmann H, Pratontep S (2016) Efficiency of SPIONs functionalized with polyethylene glycol bis (amine) for heavy metal removal. J Magn Magn Mater 414:32–37

    CAS  Google Scholar 

  • Widder KJ, Morris RM, Poore G, Howard DP, Senyei AE (1981) Tumor remission in Yoshida sarcoma-bearing rts by selective targeting of magnetic albumin microspheres containing doxorubicin. Proc Natl Acad Sci 78(1):579–581

    CAS  Google Scholar 

  • Wu T, Pan H, Chen R, Luo D, Li Y, Wang L (2016) Preparation and properties of magnetic Fe3O4 hollow spheres based magnetic-fluorescent nanoparticles. J Alloys Compd 689:107–113

    CAS  Google Scholar 

  • Wu W, Wu Z, Yu T, Jiang C, Kim W-S (2015) Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications. Sci Technol Adv Mater 16(2):023501

    Google Scholar 

  • Xu J-K, Zhang F-F, Sun J-J, Sheng J, Wang F, Sun M (2014a) Bio and nanomaterials based on Fe3O4. Molecules 19(12):21506–21528

    Google Scholar 

  • Xu J, Sun J, Wang Y, Sheng J, Wang F, Sun M (2014b) Application of iron magnetic nanoparticles in protein immobilization. Molecules 19(8):11465–11486

    Google Scholar 

  • Yagub MT, Sen TK, Afroze S, Ang HM (2014) Dye and its removal from aqueous solution by adsorption: a review. Adv Colloid Interf Sci 209:172–184

    CAS  Google Scholar 

  • Yantasee W, Warner CL, Sangvanich T, Addleman RS, Carter TG, Wiacek RJ, Fryxell GE, Timchalk C, Warner MG (2007) Removal of heavy metals from aqueous systems with thiol functionalized superparamagnetic nanoparticles. Environ Sci Technol 41(14):5114–5119

    CAS  Google Scholar 

  • Yu F, Ma J, Wang J, Zhang M, Zheng J (2016) Magnetic iron oxide nanoparticles functionalized multi-walled carbon nanotubes for toluene, ethylbenzene and xylene removal from aqueous solution. Chemosphere 146:162–172

    CAS  Google Scholar 

  • Zhang Y, Liu J-Y, Ma S, Zhang Y-J, Zhao X, Zhang X-D, Zhang Z-D (2010) Synthesis of PVP-coated ultra-small Fe 3 O 4 nanoparticles as a MRI contrast agent. J Mater Sci Mater Med 21(4):1205–1210

    CAS  Google Scholar 

  • Zhang Y, Nan Z (2015) Modified magnetic properties of MnFe2O4 by CTAB with coprecipitation method. Mater Lett 149:22–24

    CAS  Google Scholar 

  • Zhang Y, Wu B, Xu H, Liu H, Wang M, He Y, Pan B (2016) Nanomaterials-enabled water and wastewater treatment. NanoImpact 3-4:22–39

    Google Scholar 

  • Zhu J, Wei S, Chen M, Gu H, Rapole SB, Pallavkar S, Ho TC, Hopper J, Guo Z (2013) Magnetic nanocomposites for environmental remediation. Adv Powder Technol 24(2):459–467

    CAS  Google Scholar 

  • Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22(35):3906–3924

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nabisab Mujawar Mubarak.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Responsible Editor: Tito Roberto Cadaval Jr

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, F.S.A., Mubarak, N.M., Khalid, M. et al. Magnetic nanoadsorbents’ potential route for heavy metals removal—a review. Environ Sci Pollut Res 27, 24342–24356 (2020). https://doi.org/10.1007/s11356-020-08711-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-08711-6

Keywords

Navigation