Skip to main content

Advertisement

Log in

Perspectives and applications of nanotechnology in water treatment

  • Review
  • Published:
Environmental Chemistry Letters Aims and scope Submit manuscript

Abstract

Industrialization and excessive use of pesticides for boosting agricultural production have adversely affected the ecosystem, polluting natural water reserves. Remediation of contaminated water has been an area of concern with numerous techniques being applied to improve the quality of naturally available water to the level suitable for human consumption. Most of these methods, however, generate by-products that are sometimes toxic. Heterogenous photocatalysis using metal oxide nanostructures for water purification is an attractive option because no harmful by-products are created. A discussion on possible methods to engineer metal oxides for visible light photocatalysis is included to highlight the use of solar energy for water purification. Multifunctional photocatalytic membranes are considered advantageous over freely suspended nanoparticles due to the ease of its removal from the purified water. An overview of water remediation techniques is presented, highlighting innovations through nanotechnology for possible addressing of problems associated with current techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adams LK et al (2006) Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. Water Res 40(19):3527–3532

    Article  CAS  Google Scholar 

  • Aderhold D et al (1996) The removal of heavy-metal ions by seaweeds and their derivatives. Bioresour Technol 58(1):1–6

    Article  CAS  Google Scholar 

  • Aguedach A et al (2005) Photocatalytic degradation of azo-dyes reactive black 5 and reactive yellow 145 in water over a newly deposited titanium dioxide. Appl Catal B 57(1):55–62

    Article  CAS  Google Scholar 

  • Ajmal M et al (2000) Adsorption studies on Citrus reticulata (fruit peel of orange): removal and recovery of Ni(II) from electroplating wastewater. J Hazard Mater 79(1–2):117–131

    Article  CAS  Google Scholar 

  • Allen SJ et al (1998) The production and characterisation of activated carbons: a review. Dev Chem Eng Miner Process 6(5):231–261

    Article  Google Scholar 

  • Anirudhan TS et al (2011) Adsorptive removal of heavy metal ions from industrial effluents using activated carbon derived from waste coconut buttons. J Environ Sci 23(12):1989–1998

    Article  CAS  Google Scholar 

  • Apiratikul R et al (2008) Batch and column studies of biosorption of heavy metals by Caulerpa lentillifera. Bioresour Technol 99(8):2766–2777

    Article  CAS  Google Scholar 

  • Araújo MM et al (1997) Trivalent chromium sorption on alginate beads. Int Biodeterior Biodegradation 40(1):63–74

    Article  Google Scholar 

  • Argun ME et al (2008) A new approach to modification of natural adsorbent for heavy metal adsorption. Bioresour Technol 99(7):2516–2527

    Article  CAS  Google Scholar 

  • Ayoub GM et al (2001) Heavy metal removal by coagulation with seawater liquid bittern. J Environ Eng 127(3):196–207

    Article  CAS  Google Scholar 

  • Babel S et al (2003) Low-cost adsorbents for heavy metals uptake from contaminated water: a review. J Hazard Mater 97(1–3):219–243

    Article  CAS  Google Scholar 

  • Bablon G (1991) Practical application of ozone: principles and case studies. In: Ozone in water treatment application and engineering. AWWARF, Lewis Publishers, New York, pp 133–316

  • Baes AU et al (1996) Ion exchange and adsorption of some heavy metals in a modified coconut coir cation exchanger. Water Sci Technol 34(11):193–200

    Article  CAS  Google Scholar 

  • Bailey SE et al (1999) A review of potentially low-cost sorbents for heavy metals. Water Res 33(11):2469–2479

    Article  CAS  Google Scholar 

  • Baker MN et al (1981) The quest for pure water. American Water Works Association, Denver

    Google Scholar 

  • Bandala ER et al (2002) Solar photocatalytic degradation of Aldrin. Catal Today 76(2–4):189–199

    Article  CAS  Google Scholar 

  • Banerjee S et al (2006) Physics and chemistry of photocatalytic titanium dioxide: visualization of bactericidal activity using atomic force microscopy. Curr Sci 90(10):1378–1383

    CAS  Google Scholar 

  • Barakat MA (2011) New trends in removing heavy metals from industrial wastewater. Arab J Chem 4(4):361–377

    Article  CAS  Google Scholar 

  • Baruah S et al (2008a) Visible light photocatalysis by tailoring crystal defects in zinc oxide nanostructures. Nano 3(5):399–407

    Article  CAS  Google Scholar 

  • Baruah S et al (2008b) Growth of ZnO nanowires on nonwoven polyethylene fibers. Sci Technol Adv Mater 9(2):025009

    Article  CAS  Google Scholar 

  • Baruah S et al (2009a) Hydrothermal growth of ZnO nanostructures. Sci Technol Adv Mater 10:013001

    Article  CAS  Google Scholar 

  • Baruah S et al (2009b) Nanotechnology applications in pollution sensing and degradation in agriculture. Environ Chem Lett 7(3):191–204

    Article  CAS  Google Scholar 

  • Baruah S et al (2009c) Nanotechnology applications in pollution sensing and degradation in agriculture: a review. Environ Chem Lett 7:1–14

    Article  CAS  Google Scholar 

  • Baruah S et al (2009d) Nanoparticle applications for environmental control and remediation. In: Chaughule RS, Ramanujan RV (eds) Nanoparticles: synthesis, characterization and applications. American Scientific Publishers, Valencia, pp 195–216

    Google Scholar 

  • Baruah S et al (2009e) Photo-reactivity of ZnO nanoparticles in visible light: effect of surface states on electron transfer reaction. J Appl Phys 105:074308

    Article  CAS  Google Scholar 

  • Baruah S et al (2010a) Photocatalytic paper using zinc oxide nanorods. Sci Technol Adv Mater 11(5):055002

    Article  CAS  Google Scholar 

  • Baruah S et al (2010b) Enhanced visible light photocatalysis through fast crystallization of zinc oxide nanorods. Beilstein J Nanotechnol 1:14–20

    Article  CAS  Google Scholar 

  • Baruah S et al (2011) Zinc stannate nanostructures: hydrothermal synthesis. Sci Technol Adv Mater 12(1):013004

    Article  Google Scholar 

  • Baruah S et al (2012) Development of a visible light active photocatalytic portable water purification unit using ZnO nanorods. Catal Sci Technol 2(5):918–921

    Article  CAS  Google Scholar 

  • Baruah S et al (2015) Nanotechnology in water treatment. In: Lichtfouse E, Schwarzbaur J, Robert D (eds) Pollutants in buildings, water and living organisms. Environmental chemistry for a sustainable world, vol 7. Springer International Publishing, Switzerland, pp 51–84

  • Benabbou AK et al (2007) Photocatalytic inactivation of Escherichia coli: effect of concentration of TiO2 and microorganism, nature, and intensity of UV irradiation. Appl Catal B Environ 76(3–4):257–263

    Article  CAS  Google Scholar 

  • Bhattacharyya KG et al (2008) Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: a review. Adv Colloid Interface Sci 140(2):114–131

    Article  CAS  Google Scholar 

  • Bianco-Prevot A et al (2001) Continuous monitoring of photocatalytic treatments by flow injection. Degradation of dicamba in aqueous TiO2 dispersions. Chemosphere 44(2):249–255

    Article  CAS  Google Scholar 

  • Bolton JR (1999) UV application handbook. Bolton Photosciences Inc, Edmonton

    Google Scholar 

  • Bose P et al (2002) Critical evaluation of treatment strategies involving adsorption and chelation for wastewater containing copper, zinc and cyanide. Adv Environ Res 7(1):179–195

    Article  CAS  Google Scholar 

  • Brame J et al (2011) Nanotechnology-enabled water treatment and reuse: emerging opportunities and challenges for developing countries. Trends Food Sci Technol 22(11):618–624

    Article  CAS  Google Scholar 

  • Bukhari Z et al (1999) Medium-pressure UV for oocyst Inactivation. J AWWA 91(3):86–94

    CAS  Google Scholar 

  • Burch JD et al (1998) Water disinfection for developing countries and potential for solar thermal pasteurization. Sol Energy 64(1–3):87–97

    Article  Google Scholar 

  • Camel V et al (1998) The use of ozone and associated oxidation processes in drinking water treatment. Water Res 32(11):3208–3222

    Article  CAS  Google Scholar 

  • Cantor KP et al (1998) Drinking water source and chlorination byproducts I. Risk of bladder cancer. Epidemiology 9(1):21–28

    Article  CAS  Google Scholar 

  • Cantor KP et al (1999) Drinking water source and chlorination by products in Iowa. III. Risk of brain cancer. Am J Epidemiol 150(6):552–560

    Article  CAS  Google Scholar 

  • Chang C et al (1994) Adsorption kinetics of cadmium chelates on activated carbon. J Hazard Mater 38(3):439–451

    Article  CAS  Google Scholar 

  • Chatterjee D et al (2005) Visible light induced photocatalytic degradation of organic pollutants. J Photochem Photobiol C Photochem Rev 6(2–3):186–205

    Article  CAS  Google Scholar 

  • Chen JQ et al (2006) Study on degradation of methyl orange using pelagite as photocatalyst. J Hazard Mater 138(1):182–186

    Article  CAS  Google Scholar 

  • Cho M et al (2004) Linear correlation between inactivation of E. coli and OH radical concentration in TiO2 photocatalytic disinfection. Water Res 38(4):1069–1077

    Article  CAS  Google Scholar 

  • Cochrane EL et al (2006) A comparison of low-cost biosorbents and commercial sorbents for the removal of copper from aqueous media. J Hazard Mater 137(1):198–206

    Article  CAS  Google Scholar 

  • Corapcioglu MO et al (1987) The adsorption of heavy metals onto hydrous activated carbon. Water Res 21(9):1031–1044

    Article  CAS  Google Scholar 

  • DeMers LD et al (1992) Alternative disinfection technologies for small drinking water systems. AWWARF and AWWA, Denver

    Google Scholar 

  • Di Natale F et al (2007) Removal of chromium ions form aqueous solutions by adsorption on activated carbon and char. J Hazard Mater 145(3):381–390

    Article  CAS  Google Scholar 

  • Domingue EL (1988) Effects of three oxidizing biocides on Legionella pneumophila, serogroup 1. Appl Environ Microbiol 40:11–30

    Google Scholar 

  • Eddy M (2004) Waste water engineering: treatment and reuse. McGraw Hill, New York

    Google Scholar 

  • Ellis KV (1991) Water disinfection: a review with some consideration of the requirements of the third world. Crit Rev Environ Control 20(5–6):341–407

    Article  CAS  Google Scholar 

  • EPA (1999) Alternative disinfectants and oxidants. EPA 3–52

  • Erkan A et al (2006) Photocatalytic microbial inactivation over Pd doped SnO2 and TiO2 thin films. J Photochem Photobiol A Chem 184(3):313–321

    Article  CAS  Google Scholar 

  • Evgenidou E et al (2005) Semiconductor-sensitized photodegradation of dichlorvos in water using TiO2 and ZnO as catalysts. Appl Catal B Environ 59(1–2):81–89

    Article  CAS  Google Scholar 

  • Farooq S et al (1977) The effect of ozone bubbles on disinfection. Water Ozone Sci Eng 9(2):233

    Google Scholar 

  • Foletto EL et al (2010) Hydrothermal preparation of Zn 2SnO 4 nanocrystals and photocatalytic degradation of a leather dye. J Appl Electrochem 40(1):59–63

    Article  CAS  Google Scholar 

  • Fu F et al (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manag 92(3):407–418

    Article  CAS  Google Scholar 

  • Fujishima A et al (2000) Titanium dioxide photocatalysis. J Photochem Photobiol C Photochem Rev 1(1):1–21

    Article  CAS  Google Scholar 

  • Gadgil A (1997) Field-testing UV disinfection of drinking water. Water Engineering Development Center, University of Loughborough, Loughborough LBNL 40360

    Google Scholar 

  • Gaya UI et al (2008) Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems. J Photochem Photobiol C Photochem Rev 9(1):1–12

    Article  CAS  Google Scholar 

  • Gelover S et al (2006) A practical demonstration of water disinfection using TiO2 films and sunlight. Water Res 40(17):3274–3280

    Article  CAS  Google Scholar 

  • Glaze WH et al (1988) Advanced oxidation processes for treating groundwater contaminated with TCE and PCE: laboratory studies. J AWWA 88(5):57–63

    Google Scholar 

  • Gombotz WR et al (2012) Protein release from alginate matrices. Adv Drug Deliv Rev 64:194–205

    Article  Google Scholar 

  • Gopal K et al (2007) Chlorination byproducts, their toxicodynamics and removal from drinking water. J Hazard Mater 140(1–2):1–6

    Article  CAS  Google Scholar 

  • Grant DC et al (1987) Removal of radioactive contaminants from West Valley waste streams using natural zeolites. Environ Prog 6(2):104–109

    Article  CAS  Google Scholar 

  • Gupta VK et al (2009) Application of low-cost adsorbents for dye removal—a review. J Environ Manag 90(8):2313–2342

    Article  CAS  Google Scholar 

  • Gyürék LL et al (1999) Ozone inactivation kinetics of Cryptosporidium in phosphate buffer. J Environ Eng ASCE 125(10):913–924

    Article  Google Scholar 

  • Hebert A et al (2010) Innovative method for prioritizing emerging disinfection by-products (DBPs) in drinking water on the basis of their potential impact on public health. Water Res 44(10):3147–3165

    Article  CAS  Google Scholar 

  • Herrmann JM et al (2000) Photocatalytic degradation of pesticides in agricultural used waters. C R Acad Sci Ser IIc Chem 3(6):417–422

    CAS  Google Scholar 

  • Hijnen WAM et al (2006) Inactivation credit of UV radiation for viruses, bacteria and protozoan (oo)cysts in water: a review. Water Res 40(1):3–22

    Article  CAS  Google Scholar 

  • Hildesheim ME et al (1998) Drinking water source and chlorination byproducts II. Risk of colon and rectal cancers. Epidemiology 9(1):29–35

    Article  CAS  Google Scholar 

  • Hillie T et al (2007) Nanotechnology and the challenge of clean water. Nat Nanotechnol 2(11):663–664

    Article  CAS  Google Scholar 

  • Hirano S (2009) A current overview of health effect research on nanoparticles. Environ Health Prev Med 14(4):223–225

    Article  Google Scholar 

  • Hoehn RC et al (1996) AWWA water quality technology conference. Boston, MA, Nov 17–21

  • Hoigné J et al (1976) The role of hydroxyl radical reactions in ozonation processes in aqueous solutions. Water Res 10(5):377–386

    Article  Google Scholar 

  • Holan ZR et al (1993) Biosorption of cadmium by biomass of marine algae. Biotechnol Bioeng 41(8):819–825

    Article  CAS  Google Scholar 

  • Hornyak GL et al (2008) Introduction to nanoscience. CRC Press, Boca Raton

    Google Scholar 

  • http://www.drinking-water.org/html/en/Treatment/Chemical-Disinfection-Oxidants-technologies.html

  • http://www.eoearth.org/article/Human_population_explosion

  • http://www.fumatech.com/EN/Membrane-technology/Membrane-processes/Nanofiltration/

  • http://www.inchem.org/documents/ehc/ehc/ehc216.htm#SectionNumber:1.3

  • http://www.techneau.org/fileadmin/files/Publications/Publications/Deliverables/D5.3.4b.pdf

  • http://www.who.int/infectious-disease-report/pages/textonly.html

  • http://www.who.int/water_sanitation_health/dwq/gdwq0506.pdf

  • http://www.womensvoices.org/wp-content/uploads/2010/05/Disinfectant-Overkill.pdf

  • Huang CP et al (1977) The removal of chromium(VI) from dilute aqueous solution by activated carbon. Water Res 11(8):673–679

    Article  CAS  Google Scholar 

  • Huang CP et al (1984) The removal of mercury(II) from dilute aqueous solution by activated carbon. Water Res 18(1):37–46

    Article  CAS  Google Scholar 

  • Huang J et al (1997) Disinfection effect of chlorine dioxide on bacteria in water. Water Res 31(3):607–613

    Article  CAS  Google Scholar 

  • Huang N et al (1998) Photochemical disinfection of Escherichia coli with a TiO2 colloid solution and a self-assembled TiO2 thin film. Supramol Sci 5(5–6):559–564

    Article  CAS  Google Scholar 

  • Huang J et al (2012) Size-controlled synthesis of porous ZnSnO 3 cubes and their gas-sensing and photocatalysis properties. Sens Actuators B Chem 171–172:572–579

    Article  CAS  Google Scholar 

  • Ibanez JA et al (2003) Photocatalytic bactericidal effect of TiO2 on Enterobacter cloacae: comparative study with other Gram (-) bacteria. J Photochem Photobiol A Chem 157(1):81–85

    Article  CAS  Google Scholar 

  • Karanis P et al (1992) UV sensitivity of protozoan parasites. Aqua 41:95–100

    CAS  Google Scholar 

  • Katz J (1980) Ozone and chlorine dioxide technology for disinfection of drinking water. Noyes Data Corporation, Park Ridge

    Google Scholar 

  • Kelesoglu S (2007) Comparative adsorption studies of heavy metal ions on chitin and chitosan biopolymers. Master thesis, Graduate school of engineering and science, chemistry department. Izmir Institute of Technology

  • Kinman RN (1975) Water and wastewater disinfection with ozone: a critical review. Crit Rev Environ Control 5:141–152

    Article  CAS  Google Scholar 

  • Kobya M (2004) Removal of Cr(VI) from aqueous solutions by adsorption onto hazelnut shell activated carbon: kinetic and equilibrium studies. Bioresou Technol 91(3):317–321

    Article  CAS  Google Scholar 

  • Kobya M et al (2005) Adsorption of heavy metal ions from aqueous solutions by activated carbon prepared from apricot stone. Bioresour Technol 96(13):1518–1521

    Article  CAS  Google Scholar 

  • Koros WJ et al (1996) Terminology for membranes and membrane processes (IUPAC). Pure Appl Chem 86(7):1479–1489

    Google Scholar 

  • Krishna V et al (2008) Mechanism of enhanced photocatalysis with polyhydroxy fullerenes. Appl Catal B Environ 79(4):376–381

    Article  CAS  Google Scholar 

  • Kurniawan TA et al (2006a) Comparisons of low-cost adsorbents for treating wastewaters laden with heavy metals. Sci Total Environ 366(2–3):409–426

    Article  CAS  Google Scholar 

  • Kurniawan TA et al (2006b) Physico-chemical treatment techniques for wastewater laden with heavy metals. Chem Eng J 118(1–2):83–98

    Article  CAS  Google Scholar 

  • Kurz A et al (2006) Strategies for novel transparent conducting sol-gel oxide coatings. Thin Solid Films 502(1–2):212–218

    Article  CAS  Google Scholar 

  • Lee CK et al (1995) Removal of chromium from aqueous solution. Bioresour Technol 54(2):183–189

    Article  CAS  Google Scholar 

  • Letterman RD (ed) (1999) Water quality and treatment. American Water Works Association and McGraw-Hill, New York

    Google Scholar 

  • Li Q et al (2008) Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Res 42(18):4591–4602

    Article  CAS  Google Scholar 

  • Loge FJ et al (1999) Ultraviolet disinfection of secondary wastewater effluent: prediction of performance and design. Water Environ Res 68:900–916

    Article  Google Scholar 

  • Lonnen J et al (2005) Solar and photocatalytic disinfection of protozoan, fungal and bacterial microbes in drinking water. Water Res 39(5):877–883

    Article  CAS  Google Scholar 

  • Lou X et al (2006) Hydrothermal synthesis, characterization and photocatalytic properties of Zn2SnO4 nanocrystal. Mater Sci Eng A 432(1–2):221–225

    Article  CAS  Google Scholar 

  • Lykins BW et al (1986) Using chlorine dioxide for trihalomethane control. J Am Water Works Assoc 78(6):88–93

    CAS  Google Scholar 

  • Mahalakshmi M et al (2007) Photocatalytic degradation of carbofuran using semiconductor oxides. J Hazard Mater 143(1–2):240–245

    Article  CAS  Google Scholar 

  • Mahmood MA et al (2011) Enhanced visible light photocatalysis by manganese doping or rapid crystallization with ZnO nanoparticles. Mater Chem Phys 30(1–2):531–535

    Article  CAS  Google Scholar 

  • Makhal A et al (2010) Role of resonance energy transfer in light harvesting of zinc oxide-based dye-sensitized solar cells. J Phys Chem C 114(23):10390–10395

    Article  CAS  Google Scholar 

  • Mamane H et al (2010) The use of an open channel, low pressure UV reactor for water treatment in low head recirculating aquaculture systems (LH-RAS). Aquac Eng 42(3):103–111

    Article  Google Scholar 

  • Marcucci M et al (2003) Membrane technologies applied to textile wastewater treatment. Ann N Y Acad Sci 984:53–64

    Article  CAS  Google Scholar 

  • Marshall WE et al (1999) Enhanced metal adsorption by soybean hulls modified with citric acid. Bioresour Technol 69(3):263–268

    Article  CAS  Google Scholar 

  • Medina-Ramon M et al (2005) Asthma, chronic bronchitis, and exposure to irritant agents in occupational domestic cleaning: a nested case–control study. Occup Environ Med 62(9):598–606

    Article  CAS  Google Scholar 

  • Ming DW et al (1987) Quantitative determination of clinoptilolite in soils by a cation-exchange capacity method. Clay Miner 35(6):463–468

    Article  CAS  Google Scholar 

  • Mohan D et al (2006) Activated carbons and low cost adsorbents for remediation of tri- and hexavalent chromium from water. J Hazard Mater 137(2):762–811

    Article  CAS  Google Scholar 

  • Mohanty K et al (2006) Preparation and characterization of activated carbons from Sterculia alata nutshell by chemical activation with zinc chloride to remove phenol from wastewater. Adsorption 12(2):119–132

    Article  CAS  Google Scholar 

  • Najam Khan M et al (2014) Visible light photocatalysis of mixed phase zinc stannate/zinc oxide nanostructures precipitated at room temperature in aqueous media. Ceram Int 40(6):8743–8752

    Article  CAS  Google Scholar 

  • Najam Khan M et al (2015) Comparison of photocatalytic activity of zinc stannate particles and zinc stannate/zinc oxide composites for the removal of phenol from water, and a study on the effect of pH on photocatalytic efficiency. Mater Sci Semicond Process 36:124–133

    Article  CAS  Google Scholar 

  • Ngah WSW et al (2008) Adsorption of Cu(II) ions in aqueous solution using chitosan beads, chitosan–GLA beads and chitosan–alginate beads. Chem Eng J 143(1–3):62–72

    Article  CAS  Google Scholar 

  • Oller I et al (2006) Solar photocatalytic degradation of some hazardous water-soluble pesticides at pilot-plant scale. J Hazard Mater 138(3):507–517

    Article  CAS  Google Scholar 

  • Ozaki H et al (2002) Performance of an ultra-low-pressure reverse osmosis membrane (ULPROM) for separating heavy metal: effects of interference parameters. Desalination 144(1–3):287–294

    Article  CAS  Google Scholar 

  • Paajanen A et al (1997) Sorption of cobalt on activated carbons from aqueous solutions. Sep Sci Technol 32(1–4):813–826

    Article  Google Scholar 

  • Park HG et al (2004) Novel type of alginate gel-based adsorbents for heavy metal removal. J Chem Technol Biotechnol 79:1080–1083

    Article  CAS  Google Scholar 

  • Pasparakis G et al (2006) Swelling studies and in vitro release of verapamil from calcium alginate and calcium alginate–chitosan beads. Int J Pharm 323(1–2):34–42

    Article  CAS  Google Scholar 

  • Pollard SJT et al (1992) Low-cost adsorbents for waste and wastewater treatment: a review. Sci Total Enviro 116(1–2):31–52

    Article  CAS  Google Scholar 

  • Qdais HA et al (2004) Removal of heavy metals from wastewater by membrane processes: a comparative study. Desalination 164(2):105–110

    Article  CAS  Google Scholar 

  • Qi L et al (2004) Preparation and antibacterial activity of chitosan nanoparticles. Carbohydr Res 339(16):2693–2700

    Article  CAS  Google Scholar 

  • Rahman MA et al (2005) Photocatalysed degradation of two selected pesticide derivatives, dichlorvos and phosphamidon, in aqueous suspensions of titanium dioxide. Desalination 181(1–3):161–172

    Article  CAS  Google Scholar 

  • Ranganathan K (2000) Chromium removal by activated carbons prepared from Casurina equisetifolia leaves. Bioresour Technol 73(2):99–103

    Article  CAS  Google Scholar 

  • Rincon AG et al (2004) Bactericidal action of illuminated TiO2 on pure Escherichia coli and natural bacterial consortia: post-irradiation events in the dark and assessment of the effective disinfection time. Appl Catal B Environ 49(2):99–112

    Article  CAS  Google Scholar 

  • Rouquerol F (1999) Adsorption by powders and porous solids. Academic Press, London

    Google Scholar 

  • Sadiq R et al (2004) Disinfection by-products (DBPs) in drinking water and predictive models for their occurrence: a review. Science of the Total Environment 321(1–3):21–46

    Article  CAS  Google Scholar 

  • Sapkota A et al (2011) Zinc oxide nanorod mediated visible light photoinactivation of model microbes in water. Nanotechnology 22(21):215703

    Article  CAS  Google Scholar 

  • Sawyer NC et al (1994) Chemistry for environmental engineering. Graw Hill International Edition, Singapore

    Google Scholar 

  • Semerjian L et al (2003) High-pH–magnesium coagulation–flocculation in wastewater treatment. Adv Environ Res 7(2):389–403

    Article  CAS  Google Scholar 

  • Sobsey MD (1989) Inactivation of health-related microorganisms in water by disinfection processes. Water Sci Technol 21(3):179–195

    CAS  Google Scholar 

  • Sondi I et al (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275(1):177–182

    Article  CAS  Google Scholar 

  • Stöcker M (2005) Gas phase catalysis by zeolites. Microporous and Mesoporous Mater 82(3):257–292

    Article  CAS  Google Scholar 

  • Sugunan A et al (2008) Pollution treatment, remediation, and sensing. In: Krug H (ed) Nanotechnology, vol 2. Wiley-VCH, Weinheim, p 125–146

    Google Scholar 

  • Tian Z et al (2012) Zinc stannate nanocubes and nanourchins with high photocatalytic activity for methyl orange and 2,5-DCP degradation. J Mater Chem 22(33):17210–17214

    Article  CAS  Google Scholar 

  • Tiravanti G et al (1997) Pretreatment of tannery wastewaters by an ion exchange process for Cr(III) removal and recovery. Water Sci Technol 36(2–3):197–207

    Article  CAS  Google Scholar 

  • Tran HH et al (1999) Comparison of chromatography and desiccant silica gels for the adsorption of metal ions—I. adsorption and kinetics. Water Res 33(13):2992–3000

    Article  CAS  Google Scholar 

  • Tzanavaras Paraskevas D et al (2007) Review of analytical methods for the determination of chlorine dioxide. Cent Eur J Chem 5(1):1–12

    Article  CAS  Google Scholar 

  • Uzun I et al (2000) Adsorption of some heavy metal ions from aqueous solution by activated carbon and comparison of percent adsorption results of activated carbon with those of some other adsorbents. Turk J Chem 24:291–297

    CAS  Google Scholar 

  • Vaca Mier M et al (2001) Heavy metal removal with mexican clinoptilolite: multi-component ionic exchange. Water Res 35(2):373–378

    Article  CAS  Google Scholar 

  • Vijaya Y et al (2008) Modified chitosan and calcium alginate biopolymer sorbents for removal of nickel (II) through adsorption. Carbohydr Polym 72(2):261–271

    Article  CAS  Google Scholar 

  • Volesky B (2003) Sorption by biomass. BV Sorbex Inc, Montreal

    Google Scholar 

  • Wan Ngah WS et al (2011) Adsorption of dyes and heavy metal ions by chitosan composites: a review. Carbohydr Polym 83(4):1446–1456

    Article  CAS  Google Scholar 

  • Wang LK et al (2004) Chemical precipitation and physiochemical treatment processes, vol 3. Humana Press, New York, pp 141–198

    Google Scholar 

  • Wang J et al (2009) Biosorbents for heavy metals removal and their future. Biotechnol Adv 27(2):195–226

    Article  CAS  Google Scholar 

  • WHO (2004) Guidelines for drinking water quality, vol 1. W. H. Organization, Geneva

  • Wiesner MR et al (2006) Assessing the risks of manufactured nanomaterials. Environ Sci Technol 40(14):4336–4345

    Article  CAS  Google Scholar 

  • Zhao Y et al (2012) Occurrence and formation of chloro- and bromo-benzoquinones during drinking water disinfection. Water Res 46(14):4351–4360

    Article  CAS  Google Scholar 

  • Zhou H et al (2002) Advanced technologies in water and wastewater treatment. J Environ Eng Sci 1:247–264

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joydeep Dutta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baruah, S., Najam Khan, M. & Dutta, J. Perspectives and applications of nanotechnology in water treatment. Environ Chem Lett 14, 1–14 (2016). https://doi.org/10.1007/s10311-015-0542-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10311-015-0542-2

Keywords

Navigation