Skip to main content
Log in

Selective catalytic reduction of NOx by NH3 over CeVO4-CeO2 nanocomposite

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In this study, it was found that the CeVO4-CeO2 nanocomposite possessed remarkably selective catalytic reduction (SCR) performance and wider active temperature scope. And, the promotion principle was explored based on BET, XRD, XPS, H2-temperature-programmed reduction, NH3-temperature-programmed desorption, and in situ diffuse reflectance infrared Fourier transform (DRIFT) techniques. The characterization outcomes manifested that the CeVO4-CeO2 nanocomposite could inhibit its crystallinity and enhance the concentrations of chemisorbed oxygen species and Ce3+, which was advantageous to the SCR process. Moreover, the in situ DRIFT technique manifested that the NH3-SCR reaction over Ce0.75V0.25Oy was enhanced effectively through the mechanism of L-H.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Bellakki MB, Baidya T, Shivakumara C, Vasanthacharya NY, Hegde MS, Madras G (2008) Synthesis, characterization, redox and photocatalytic properties of Ce1−xPdxVO4 (0 ≤ x ≤ 0.1). Appl Catal B Environ 84:474–481

    CAS  Google Scholar 

  • Chen H, Sayari A, Adnot A, Larachi F (2001) Composition–activity effects of Mn–Ce–O composites on phenol catalytic wet oxidation. Appl Catal B Environ 32:195–204

    Google Scholar 

  • Chen L, Li J, Ge M (2010) DRIFT study on cerium−tungsten/titiania catalyst for selective catalytic reduction of NOx with NH3. Environ Sci Technol 44:9590–9596

    CAS  Google Scholar 

  • Chen Q, Guo R, Wang Q, Pan W, Wang W, Yang N, Lu C, Wang S (2016) The catalytic performance of Mn/TiWOx catalyst for selective catalytic reduction of NOx with NH3. Fuel 181:852–858

    CAS  Google Scholar 

  • Chen L, Weng D, Wang J, Weng D, Cao L (2018) Low-temperature activity and mechanism of WO3-modified CeO2-TiO2 catalyst under NH3-NO/NO2 SCR conditions. Chin J Catal 39:1804–1813

    CAS  Google Scholar 

  • Cheng C, Wang F, Tian Y, Wu X, Zheng J, Zhang J, Li L, Yang P, Zhao J (2020) Review and prospects of hydrate cold storage technology. Renew Sust Energ Rev 117:109492

    CAS  Google Scholar 

  • Danh HT, Kumar PA, Jeong YE, Ha HP (2016) Enhanced NH3-SCR activity of Sb-V/CeO2–TiO2 catalyst at low temperatures by synthesis modification. Res Chem Intermed 42:155–169

    CAS  Google Scholar 

  • Du X, Gao X, Fu Y, Gao F, Luo Z, Cen K (2012) The co-effect of Sb and Nb on the SCR performance of the V2O5/TiO2 catalyst. J Colloid Interface Sci 368:406–412

    CAS  Google Scholar 

  • Fang C, Zhang D, Cai S, Zhang L, Huang L, Li H, Maitarad P, Shi L, Gao R, Zhang J (2013) Low-temperature selective catalytic reduction of NO with NH3 over nanoflaky MnOx on carbon nanotubes in situ prepared via a chemical bath deposition route. Nanoscale 5:9199–9207

    CAS  Google Scholar 

  • Ferreira A, Stranz D, Hess C (2013) Mechanism of NO2 storage in ceria studied using combined in situ Raman/FT-IR spectroscopy. Phys Chem Chem Phys 15:9066–9069

    Google Scholar 

  • Francisco MSP, Mastelaro VR, Nascente PAP, Florentino AO (2001) Activity and characterization by XPS, HR-TEM, raman spectroscopy, and BET surface area of CuO/CeO2-TiO2 catalysts. J Phys Chem B 105:10515–10522

    CAS  Google Scholar 

  • Gao X, Du X, Cui L, Fu Y, Luo Z, Cen K (2010) A Ce–Cu–Ti oxide catalyst for the selective catalytic reduction of NO with NH3. Catal Commun 12:255–258

    CAS  Google Scholar 

  • Gao S, Chen X, Wang H, Mo J, Wu Z, Liu Y, Weng X (2013) Ceria supported on sulfated zirconia as a superacid catalyst for selective catalytic reduction of NO with NH3. J Colloid Interface Sci 394:515–521

    CAS  Google Scholar 

  • Gillot S, Tricot G, Vezin H, Dacquin J, Dujardin C, Granger P (2017) Development of stable and efficient CeVO4 systems for the selective reduction of NOx by ammonia: structure-activity relationship. Appl Catal B 218:338–348

    CAS  Google Scholar 

  • Gu T, Liu Y, Weng X, Wang H, Wu Z (2010) The enhanced performance of ceria with surface sulfation for selective catalytic reduction of NO by NH3. Catal Commun 12:310–313

    CAS  Google Scholar 

  • Guo X, Bartholomew G, Hecker W, Baxter LL (2009) Effects of sulfate species on V2O5/TiO2 SCR catalysts in coal and biomass-fired systems. Appl Catal B Environ 92:30–40

    CAS  Google Scholar 

  • Guo R, Zhou Y, Pan W, Hong J, Zhen W, Jin Q, Ding C, Guo S (2013) Effect of preparation methods on the performance of CeO2/Al2O3 catalysts for selective catalytic reduction of NO with NH3. J Ind Eng Chem 19:2022–2025

    CAS  Google Scholar 

  • Guo R, Zhen W, Pan W, Zhou Y, Hong J, Xu H, Jin Q, Ding C, Guo S (2014) Effect of Cu doping on the SCR activity of CeO2 catalyst prepared by citric acid method. J Ind Eng Chem 20:1577–1580

    CAS  Google Scholar 

  • Guo R, Lu C, Pan W, Zhen W, Wang Q, Chen Q, Ding H, Yang N (2015) A comparative study of the poisoning effect of Zn and Pb on Ce/TiO2 catalyst for low temperature selective catalytic reduction of NO with NH3. Catal Commun 59:136–139

    CAS  Google Scholar 

  • Guo R, Sun P, Pan W, Li M, Liu S, Sun X, Liu S, Liu J (2017) A highly effective MnNdOx catalyst for the selective catalytic reduction of NOx with NH3. Ind Eng Chem Res 56:12566–12577

    CAS  Google Scholar 

  • He H, Dai H, Au C (2004) Defective structure, oxygen mobility, oxygen storage capacity, and redox properties of RE-based (RE = Ce, Pr) solid solutions. Catal Today 90:245–254

    CAS  Google Scholar 

  • Huang Z, Liu Z, Zhang X, Liu Q (2006) Inhibition effect of H2O on V2O5/AC catalyst for catalytic reduction of NO with NH3 at low temperature. Appl Catal B Environ 63:260–265

    CAS  Google Scholar 

  • Jiang Y, Gao X, Zhang Y, Wu W, Song H, Luo Z, Cen K (2014) Effects of PbCl2 on selective catalytic reduction of NO with NH3 over vanadia-based catalysts. J Hazard Mater 274:270–278

    CAS  Google Scholar 

  • Kang M, Park ED, Kim JM, Ye JE (2007) Manganese oxide catalysts for NOx reduction with NH3 at low temperatures. Appl Catal A Gen 327:261–269

    CAS  Google Scholar 

  • Kim M, Park S (2016) Selective reduction of NO by NH3 over Fe-zeolite-promoted V2O5-WO3/TiO2-based catalysts: great suppression of N2O formation and origin of NO removal activity loss. Catal Commun 86:82–85

    CAS  Google Scholar 

  • Kompio PGWA, Brückner A, Hipler F, Auer G, Löffler E, Grünert W (2012) A new view on the relations between tungsten and vanadium in V2O5WO3/TiO2 catalysts for the selective reduction of NO with NH3. J Catal 286:237–247

    CAS  Google Scholar 

  • Lee SM, Hong SC (2015) Promotional effect of vanadium on the selective catalytic oxidation of NH3 to N2 over Ce/V/TiO2 catalyst. Appl Catal B Environ 163:30–39

    CAS  Google Scholar 

  • Lee S, Lee H, Hong S (2014) Influence of calcination temperature on Ce/TiO2 catalysis of selective catalytic oxidation of NH3 to N2. Appl Catal A Gen 470:189–198

    CAS  Google Scholar 

  • Li Y, Cheng H, Li D, Qin Y, Xie Y, Wang S (2008) WO3/CeO2-ZrO2, a promising catalyst for selective catalytic reduction (SCR) of NOx with NH3 in diesel exhaust. Chem Commun 12:1470–1472

    Google Scholar 

  • Lian Z, Liu F, He H, Shi X, Mo J, Wu Z (2014) Manganese–niobium mixed oxide catalyst for the selective catalytic reduction of NOx with NH3 at low temperatures. Chem Eng J 250:390–398

    CAS  Google Scholar 

  • Liu Q, Liu Z, Li C (2006) Adsorption and activation of NH3 during selective catalytic reduction of NO by NH3. Chin J Catal 27:636–646

    Google Scholar 

  • Liu Y, Gu T, Weng X, Wang Y, Wu Z, Wang H (2012) DRIFT studies on the selectivity promotion mechanism of Ca-modified Ce-Mn/TiO2 catalysts for low-temperature NO reduction with NH3. J Phys Chem C 116:16582–16592

    CAS  Google Scholar 

  • Liu Z, Liu Y, Li Y, Su H, Ma L (2016a) WO3 promoted Mn–Zr mixed oxide catalyst for the selective catalytic reduction of NOx with NH3. Chem Eng J 283:1044–1050

    CAS  Google Scholar 

  • Liu Z, Liu H, Zeng H, Xu Q (2016b) A novel Ce–Sb binary oxide catalyst for the selective catalytic reduction of NOx with NH3. Catal Sci Technol 6:8063–8071

    CAS  Google Scholar 

  • Liu Y, Guo R, Duan C, Wu G, Miao Y, Gu J, Pan W (2020) A highly effective urchin-like MnCrOx catalyst for the selective catalytic reduction of NOx with NH3. Fuel 271:117667

    CAS  Google Scholar 

  • Martinez A, Prieto G, Arribas MA, Concepcion P, Sanchez-Royo JF (2007) Influence of the preparative route on the properties of WOx–ZrO2 catalysts: a detailed structural, spectroscopic, and catalytic study. J Catal 248:288–302

    CAS  Google Scholar 

  • Nie J, Wu X, Ma Z, Xu T, Si Z, Chen L, Weng D (2014) Tailored temperature window of MnOx-CeO2 SCR catalyst by addition of acidic metal oxides. Chin J Catal 35:1281–1288

    CAS  Google Scholar 

  • Pan W, Zhou Y, Guo R, Zhen W, Hong J, Xu H, Jin Q, Ding C, Guo S (2014) Influence of calcination temperature on CeO2-CuO catalyst for the selective catalytic reduction of NO with NH3. Environ Prog Sustain Energy 33:385–389

    CAS  Google Scholar 

  • Peña DA, Uphade BS, Smirniptis PG (2004) TiO2-supported metal oxide catalysts for low-temperature selective catalytic reduction of NO with NH3: I. Evaluation and characterization of first row transition metals. J Catal 221:421–431

    Google Scholar 

  • Phuruangrat A, Kuntalue B, Thongtem S, Thongtem T (2016) Effect of PEG on phase, morphology and photocatalytic activity of CeVO4 nanostructures. Mater Lett 174:138–141

    CAS  Google Scholar 

  • Qi G, Yang RT (2003) A superior catalyst for low-temperature NO reduction with NH3. Chem Commun 7:848–849

    Google Scholar 

  • Qiao D, Lu G, Liu X, Guo Y, Wang Y, Guo Y (2011) Preparation of Ce1−xFexO2 solid solution and its catalytic performance for oxidation of CH4 and CO. J Mater Sci 46:3500–3506

    CAS  Google Scholar 

  • Reidy RF, Swider KE (1995) Determination of the cerium oxidation state in cerium vanadate. J Am Ceram Soc 78:1121–11229

    CAS  Google Scholar 

  • Roy S, Viswanath B, Hegde MS, Mardas G (2008) Low-temperature selective catalytic reduction of NO with NH3 over Ti0.9M0.1O2-δ (M = Cr, Mn, Fe, Co, Cu). J Phys Chem C 112:6002–6012

    CAS  Google Scholar 

  • Shan W, Liu F, He H, Shi X, Zhang C (2012a) A superior Ce-W-Ti mixed oxide catalyst for the selective catalytic reduction of NOx with NH3. Appl Catal B Environ 115-116:100–106

    CAS  Google Scholar 

  • Shan W, Liu F, He H, Shi X, Zhang C (2012b) An environmentally-benign CeO2-TiO2 catalyst for the selective catalytic reduction of NOx with NH3 in simulated diesel exhaust. Catal Today 184:160–165

    CAS  Google Scholar 

  • Shen Y, Zhu S, Qiu T, Shen S (2009) A novel catalyst of CeO2/Al2O3 for selective catalytic reduction of NO by NH3. Catal Commun 11:20–23

    CAS  Google Scholar 

  • Sun P, Guo R, Liu S, Wang S, Pan W, Li M, Liu S, Liu J, Sun X (2017) Enhancement of the low-temperature activity of Ce/TiO2 catalyst by Sm modification for selective catalytic reduction of NOx with NH3. Mol Catal 433:224–234

    CAS  Google Scholar 

  • Thirupathi B, Smirniotis P (2012) Nickel-doped Mn/TiO2 as an efficient catalyst for the low-temperature SCR of NO with NH3: catalytic evaluation and characterizations. J Catal 288:74–83

    CAS  Google Scholar 

  • Topsøe NY (1994) Mechanism of the selective catalytic reduction of nitric oxide by ammonia elucidated by in situ on-line fourier transform infrared spectroscopy. Science 265:1217–1219

    Google Scholar 

  • Vélez RP, Ellmers I, Huang H, Bentrup U, Schünemann V, Grüner W, Brückner A (2014) Identifying active sites for fast NH3-SCR of NO/NO2 mixtures over Fe-ZSM-5 by operando EPR and UV–vis spectroscopy. J Catal 316:103–111

    Google Scholar 

  • Walin M, Gronbeck H, Spetz A, Skoglundh M (2004) Vibrational study of ammonia adsorption on Pt/SiO2. Appl Surf Sci 235:487–500

    Google Scholar 

  • Wang H, Chen X, Gao S, Wu Z, Liu Y, Weng X (2013) Deactivation mechanism of Ce/TiO2 selective catalytic reduction catalysts by the loading of sodium and calcium salts. Catal Sci Technol 3:715–722

    CAS  Google Scholar 

  • Wang Z, Guo R, Sh X, Liu X, Qin H, Liu Y, Duan C, Guo D, Pan W (2020) The superior performance of CoMnOx catalyst with ball-flowerlike structure for low-temperature selective catalytic reduction of NOx by NH3. Chem Eng J 381:122753

    CAS  Google Scholar 

  • Watanable S, Ma X, Song C (2009) Characterization of structural and surface properties of nanocrystalline TiO2−CeO2 mixed oxides by XRD, XPS, TPR, and TPD. J Phys Chem C 113:14249–14257

    Google Scholar 

  • Wijayanti K, Leister K, Chand S, Kumar A, Kamasamudram K, Currier N, Yezerets A, Olsson L (2016) Deactivation of Cu-SSZ-13 by SO2 exposure under SCR conditions. Catal Sci Technol 6:2565–2579

    CAS  Google Scholar 

  • Wu Z, Jiang B, Liu Y, Wang H, Jin R (2007) DRIFT study of manganese/titania-based catalysts for low-temperature selective catalytic reduction of NO with NH3. Environ Sci Technol 41:5812–5817

    CAS  Google Scholar 

  • Xie S, Iglesia E, Bell AT (2001) Effects of temperature on the raman spectra and dispersed oxides. J Phys Chem B 105:5144–5152

    CAS  Google Scholar 

  • Xu H, Zhang Q, Qiu C, Lin T, Gong M, Chen Y (2012) Tungsten modified MnOx–CeO2/ZrO2 monolith catalysts for selective catalytic reduction of NOx with ammonia. Chem Eng Sci 76:120–128

    CAS  Google Scholar 

  • Yang N, Guo R, Tian Y, Pan W, Chen Q, Wang Q, Lu C, Wang S (2016a) The enhanced performance of ceria by HF treatment for selective catalytic reduction of NO with NH3. Fuel 179:305–311

    CAS  Google Scholar 

  • Yang N, Guo R, Wang Q, Pan W, Chen Q, Lu C, Wang S (2016b) Deactivation of Mn/TiO2 catalyst for NH3-SCR reaction: effect of phosphorous. RSC Adv 6:11226–11232

    CAS  Google Scholar 

  • Zhang Z, Chen M, Shangguan W (2009) Low-temperature SCR of NO with propylene in excess oxygen over the Pt/TiO2 catalyst. Catal Commun 10:1330–1333

    CAS  Google Scholar 

  • Zhang Y, Zhu X, Shen K, Xu H, Sun K, Zhou C (2012) Influence of ceria modification on the properties of TiO2–ZrO2 supported V2O5 catalysts for selective catalytic reduction of NO by NH3. J Colloid Interface Sci 376:233–238

    CAS  Google Scholar 

  • Zhang L, Zhang D, Zhang J, Cai S, Fang C, Huang L, Li H, Gao R, Shi L (2013) Design of meso-TiO2@MnOx–CeOx/CNTs with a core–shell structure as DeNOx catalysts: promotion of activity, stability and SO2-tolerance. Nanoscale 5:9821–9829

    CAS  Google Scholar 

  • Zhao J, Guo X, Sun M, Zhao Y, Yang L, Song Y (2019) N2O hydrate formation in porous media: a potential method to mitigate N2O emissions. Chem Eng J 361:12–20

    CAS  Google Scholar 

Download references

Funding

This work was financially supported by the National Key R&D Program of China (2018YFB0605002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rui-tang Guo or Wei-guo Pan.

Additional information

Responsible Editor: Santiago V. Luis

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 36 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, Cp., Guo, Rt., Wu, Gl. et al. Selective catalytic reduction of NOx by NH3 over CeVO4-CeO2 nanocomposite. Environ Sci Pollut Res 27, 22818–22828 (2020). https://doi.org/10.1007/s11356-020-08875-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-08875-1

Keywords

Navigation