Skip to main content

Advertisement

Log in

Potential of residual fungal biomass: a review

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In this study, it was evaluated and documented the potential uses of the residual fungal biomass from fermentation. The chemical composition of the biomass was determined by instrumental analysis techniques for its characterization and its possible application. It was found that this biomaterial is generally composed of sugars, proteins, and lipids, which provide it certain properties and applications that must be characterized morphologically, chemically, and mechanically. The residual fungal biomass could be used for two processes: the extraction of biopolymers, with several applications in the food industry, cosmetics, and pharmaceutical, among others; and the removal of contaminants by mechanisms of adsorption with biopolymers, known also as biosorption, in tertiary treatments of wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Agnihotri, S. N. (2008) A biological adsorption process for reduction of color, bod, cod and TDS from distillery effluent. WO/2008/104997. World Intellectual Property Organization

  • Akpinar-Bayizit A (2014) Fungal lipids: the biochemistry of lipid accumulation. Int J Chem Eng Appl 5:409–414. https://doi.org/10.7763/ijcea.2014.v5.419

    Article  CAS  Google Scholar 

  • Amin F, Talpur F, Balouch A, Samoon M, Afridi H, Surhio M (2018) Utilization of Pleurotus eryngii biosorbent as an environmental bioremedy for the decontamination of trace cadmium (II) ions from water system. Water Sci Technol 78:1148–1158. https://doi.org/10.2166/wst.2018.365

    Article  CAS  Google Scholar 

  • Arief V, Trilestari K, Sunarso J, Indraswati N, Ismadji S (2008) Recent progress on biosorption of heavy metals from liquids using low cost biosorbents: characterization, biosorption parameters and mechanism studies. Clean-Soil Air Water 36:937–962. https://doi.org/10.1002/clen.200800167

    Article  CAS  Google Scholar 

  • Banner T, Fosmer A, Jessen H, Marasco E, Rush B, Veldhouse J, de Souza M (2011) Microbial bioprocesses for industrial-scale chemical production. In: Tao JA, Kazlauskas R (eds) Biocatalysis for green chemistry and chemical process development. John Wiley & Sons, New York, pp 429–467

    Chapter  Google Scholar 

  • Béligon V, Christophe G, Fontanille P, Larroche C (2016) Microbial lipids as potential source to food supplements. Curr Opin Food Sci 7:35–42. https://doi.org/10.1016/j.cofs.2015.10.002

    Article  Google Scholar 

  • Benítez T, Villa T, Acha I (1976) Some chemical and structural features of the conidial wall of Trichoderma viride. Can J Microbiol 22:318–321. https://doi.org/10.1139/m76-046

    Article  Google Scholar 

  • Bernat E, Hibbett D, and Floudas D (2013) Methods of culturing fungi and producing cellulases and chitin. United States. US8460897B1. United States Patent and Trademark Office

  • Bijl H, Schaap A, and Visser J (1997) Process for the preparation of a granular microbial biomass and isolation of valuable compounds therefrom. WO1997036996A2. World Intellectual Property Organization

  • Bordes P, Pollet E, Averous L (2009) Nano-biocomposites: biodegradable polyester/nanoclay systems. Prog Polym Sci 34:125–155. https://doi.org/10.1016/j.progpolymsci.2008.10.002

    Article  CAS  Google Scholar 

  • Botros M, Hassan A, Sorial G (2017) Role of fungal biomass in N-hexane biofiltration. Adv Microbiol 7:673–688. https://doi.org/10.4236/aim.2017.710053

    Article  CAS  Google Scholar 

  • Bowman S, Free S (2006) The structure and synthesis of the fungal cell wall. BioEssays 28:799–808. https://doi.org/10.1002/bies.20441

    Article  Google Scholar 

  • Campos-Takaki, Dietrich, Beakes (2014) Cytochemistry, ultrastructure and x-ray microanalysis methods applied to cell wall characterization of Mucoralean fungi strains. In: Microscopy: advances in scientific research and education, vol 6. FORMATEX research center, pp 121–127

  • Carvalho A, Rivaldi J, Barbosa J, de Castro H (2015) Biosynthesis, characterization and enzymatic transesterification of single cell oil of Mucor circinelloides – a sustainable pathway for biofuel production. Bioresour Technol 181:47–53. https://doi.org/10.1016/j.biortech.2014.12.110

    Article  CAS  Google Scholar 

  • Chen A, Chen G, Chen Y, Fan J, Wang L, Zeng G, Zhang W, and Zou Z (2010) Modified Phanerochaete chrysosporium adsorbent as well as preparation and application thereof. China. CN101816920A. China National Intellectual Property Administration

  • Chiao M, Chiao J (2011) Biomaterials for mems. Pan Stanford Publishing Pte Ltd, Singapore

    Book  Google Scholar 

  • Cleetus C, Thomas S, Varghese S (2013) Synthesis of petroleum-based fuel from waste plastics and performance analysis in a CI engine. J Energy. https://doi.org/10.1155/2013/608797

  • Dey M, Ahmed M, Singh R, Boruah R, Mukhopadhyay R (2017) Utilization of two agrowastes for adsorption and removal of methylene blue: kinetics and isotherm studies. Water Sci Technol 75:1138–1147. https://doi.org/10.2166/wst.2016.589

    Article  CAS  Google Scholar 

  • Ding J, Chen B, Zhu L (2013) Biosorption and biodegradation of polycyclic aromatic hydrocarbons by Phanerochaete chrysosporium in aqueous solution. Chin Sci Bull 58:613–621. https://doi.org/10.1007/s11434-012-5411-9

    Article  CAS  Google Scholar 

  • Dong T, Knoshaug E, Pienkos P, Laurens L (2016) Lipid recovery from wet oleaginous microbial biomass for biofuel production: a critical review. Appl Energy 177:879–895. https://doi.org/10.1016/j.apenergy.2016.06.002

    Article  CAS  Google Scholar 

  • Engade K, Gupta S (2010) Decolorization of textile effluent by immobilized Aspergillus terreus. J Pet Environ Biotechnol. https://doi.org/10.4172/2157-7463.1000101

  • Engler R (2012) The complex interaction between marine debris and toxic chemicals in the ocean. Environ Sci Technol 46:12302–12315. https://doi.org/10.1021/es3027105

    Article  CAS  Google Scholar 

  • Fakayode O, Oladipo A, Oluwafemi O and Songca S (2016) Biopolymer-mediated green synthesis of noble metal nanostructures. Rec Adv Biopol. https://doi.org/10.5772/62127

  • Fernandez C, Langley J, Chapman S, McCormack M, Koide R (2016) The decomposition of ectomycorrhizal fungal necromass. Soil Biol Biochem 93:38–49. https://doi.org/10.1016/j.soilbio.2015.10.017

    Article  CAS  Google Scholar 

  • Free S (2013) Fungal cell wall organization and biosynthesis. In: Elsevier (ed) Advances in genetics. Academic press, pp 33–82

  • Gastebois A, Clavaud C, Aimanianda V, Latgé J (2009) Aspergillus fumigatus: cell wall polysaccharides, their biosynthesis and organization. Future Microbiol 4:583–595

    Article  CAS  Google Scholar 

  • Geoghegan I, Steinberg G, Gurr S (2017) The role of the fungal cell wall in the infection of plants. Trends Microbiol 25:957–967. https://doi.org/10.1016/j.tim.2017.05.015

    Article  CAS  Google Scholar 

  • Ghfir B, Fonvieille J, Dargent R (1997) Influence of essential oil of Hyssopus officinalis on the chemical composition of the walls of Aspergillus fumigatus (Fresenius). Mycopathologia 138:7–12. https://doi.org/10.1023/A:1006876018261

    Article  CAS  Google Scholar 

  • Ghibal E, Roulph C, and Le Cloirec P (1992) Metal extraction process, device for its use, and its application, especially to the decontamination of effluents. France. FR 2677041 A1. National Institute of Industrial Property

  • Gmoser R, Ferreira J, Lennartsson P, Taherzadeh M (2017) Filamentous ascomycetes fungi as a source of natural pigments. Fungal Biol Biotechnol 4:1–25. https://doi.org/10.1186/s40694-017-0033-2

    Article  Google Scholar 

  • Gmoser R, Ferreira J, Lundin M, Taherzadeh M, Lennartsson P (2018) Pigment production by the edible filamentous fungus Neurospora intermedia. Fermentation. https://doi.org/10.3390/fermentation4010011

  • Gopal M, Bharathi P, Akila R (2014) A comprehensive review on biopolymers. Sci Rev Chem Commun 4:61–68

    Google Scholar 

  • Green B, Beezhold D (2011) Industrial fungal enzymes: an occupational allergen perspective. J Allergy. https://doi.org/10.1155/2011/68257

  • Grisaro V, Sharon N, and Barkai-Golan R (1968) The chemical composition of the cell walls of Penicillium digitatum Sacc. and Penicillium italicum Vvhem. J Gen Microbiol 51:145–150

  • Guan S, Chen G, Zeng G, Chen A, Shang C, Fan J, and Zou Z (2012) Nitrogen modified nanometer titanium dioxide and Phanerochete chrysosporium composite adsorbent, and its preparation method and application. China. CN102423691B. China National Intellectual Property Administration

  • Guerrand D (2017) Lipases industrial applications: focus on food and agroindustries. OCL 24:D403. https://doi.org/10.1051/ocl/2017031

    Article  Google Scholar 

  • Habijanic J, Berovic M, Boh B, Wraber B, and Petravic-Tominac V (2013) Production of biomass and polysaccharides of Lingzhi or Reishi medicinal mushroom, Ganoderma lucidum (W.Curt. :Fr.) P. Karst. (higher basidiomycetes), by submerged cultivation. Int J Med Mushrooms 15:81–90. https://doi.org/10.1615/IntJMedMushr.v15.i1.90

  • Heitman, Howlett, Crous, Stukenbrock, James, and Gow (eds.) (2017) The fungal cell wall: structure, biosynthesis, and function. In: The Fungal Kingdom. American Society of Microbiology, pp 267–292

  • Hsieh C, Wang H, Chen C, Hsu T, Tseng M (2008) Effect of plant oil and surfactant on the production of mycelial biomass and polysaccharides in submerged culture of Grifola frondosa. Biochem Eng J 38:198–205. https://doi.org/10.1016/j.bej.2007.07.001

    Article  CAS  Google Scholar 

  • Ibitoye E, Lokman I, Hezmee M, Goh Y, Zuki A, Jimoh A (2018) Extraction and physicochemical characterization of chitin and chitosan isolated from house cricket. Biomed Mater. https://doi.org/10.1088/1748-605X/aa9dde

  • Imre B, Pukánszky B (2013) Compatibilization in bio-based and biodegradable polymer blends. Eur Polym J 49:1215–1233. https://doi.org/10.1016/j.eurpolymj.2013.01.019

    Article  CAS  Google Scholar 

  • Islam M, Tudryn G, Bucinell R, Schadler L, Picu R (2017) Morphology and mechanics of fungal mycelium. Sci Rep 8. https://doi.org/10.1038/s41598-018-20637-1

  • James K (2017) Animal metabolites: from amphibians, reptiles, Aves/birds, and invertebrates. In: Pharmacognosy. Elsevier, pp 401–411. https://doi.org/10.1016/B978-0-12-802104-0.00019-6

  • Jerusik R (2010) Fungi and paper manufacture. Fungal Biol Rev 24:68–72. https://doi.org/10.1016/j.fbr.2010.04.003

    Article  Google Scholar 

  • Jiang L, Walczyk D, McIntyre G, Chan W (2016) Cost modeling and optimization of a manufacturing system for mycelium-based biocomposite parts. J Manuf Sys 41:8–20. https://doi.org/10.1016/j.jmsy.2016.07.004

    Article  Google Scholar 

  • Joye I, McClements D (2014) Biopolymer-based nanoparticles and microparticles: fabrication, characterization, and application. Curr Opin Colloid Interface Sci 19:417–427. https://doi.org/10.1016/j.cocis.2014.07.002

    Article  CAS  Google Scholar 

  • Kanmani P, Rhim J (2014) Properties and characterization of bionanocomposite films prepared with various biopolymers and ZnO nanoparticles. Carbohydr Polym 106:190–199. https://doi.org/10.1016/j.carbpol.2014.02.007

    Article  CAS  Google Scholar 

  • Kowalczyk D, Kordowska-Wiater M, Nowak J, Baraniak B (2015) Characterization of films based on chitosan lactate and its blends with oxidized starch and gelatin. Int J Biol Macromol 77:350–359. https://doi.org/10.1016/j.ijbiomac.2015.03.032

    Article  CAS  Google Scholar 

  • Kozubal M, Macur R, and Avniel Y (2017) Filamentous fungal biomats, methods of their production and methods of their use. United States. US20190316077A1. United States Patent and Trademark Office

  • Kumar C and D’Souza D (2006) A novel process for decolorization of colored effluents. United States. US20080057567A1. United States Patent and Trademark Office

  • Kumar R, Bishnoi N, Garima, Bishnoi K (2008) Biosorption of chromium(VI) from aqueous solution and electroplating wastewater using fungal biomass. Chem Eng J 135:202–208. https://doi.org/10.1016/j.cej.2007.03.004

    Article  CAS  Google Scholar 

  • Lebreton L, van der Zwet J, Damsteeg J, Slat B, Andrady A, Reisser J (2017) River plastic emissions to the world’s oceans. Nat Commun 8:1–10. https://doi.org/10.1038/ncomms15611

    Article  CAS  Google Scholar 

  • van Leeuwen J, Norton G, Ndlela S and Rudnick D (2014) Processes for isolating chitin and chitosan from fungal biomass. United States. US9249235B2. United States Patent and Trademark Office

  • Li J, Karboune S (2018) A comparative study for the isolation and characterization of mannoproteins from Saccharomyces cerevisiae yeast cell wall. Int J Biol Macromol 119:654–661

    Article  CAS  Google Scholar 

  • Li J, Karboune S (2019) Characterization of the composition and the techno-functional properties of mannoproteins from Saccharomyces cerevisiae yeast cell walls. Food Chem 297:1–9

    Google Scholar 

  • Liepins J, Kovačova E, Shvirksts K, Grube M, Rapoport A, Kogan G (2015) Drying enhances immunoactivity of spent brewer’s yeast cell wall β-d-glucans. J Biotechnol 206:12–16. https://doi.org/10.1016/j.jbiotec.2015.03.024

    Article  CAS  Google Scholar 

  • Lipke P, Ovalle R (1998) Cell wall architecture in yeast: new structure and new challenges. J Bacteriol 180:3735–3740

    Article  CAS  Google Scholar 

  • Lyman D (2002) Characterization of biomaterials. In: Barbucci R (ed) Integrated biomaterials science. Kluwer Academic Publishers, Boston, pp 325–337. https://doi.org/10.1007/0-306-47583-9_8

    Chapter  Google Scholar 

  • Maheshwari R (2005) Fungi: experimental methods in biology, Boca Raton, CRC/Taylor & Francis. 358p

  • Maleki A (2008) Characterization of functional biopolymers under various external stimuli. Dissertation, University of Oslo

  • Mapari S, Meyer A, Frisvad J, and Thrane U (2011) Production of Monascus-like azaphilone pigment. United States. US20110250656A1. United States Patent and Trademark Office

  • Mario F, Rapanà P, Tomati U, Galli E (2008) Chitin and chitosan from Basidiomycetes. Int J Biol Macromol 43:8–12. https://doi.org/10.1016/j.ijbiomac.2007.10.005

    Article  CAS  Google Scholar 

  • Markets and Markets (2016) Bioplastics & biopolymers market by type (bio-PE, bio-PET, PLA, starch blends, biodegradable polyesters, regenerated cellulose and PHA), application (packaging, bottles, agriculture), and by region - trends & forecast to 2021. [online] https://www.marketsandmarkets.com/Market-Reports/biopolymers-bioplastics-market-88795240.html

  • Mezaguer M, Kamel N, Lounici H, Kamel Z (2013) Characterization and properties of Pleurotus mutilus fungal biomass as adsorbent of the removal of uranium (VI) from uranium leachate. J Radioanal Nucl Chem 295:393–403. https://doi.org/10.1007/s10967-012-1911-y

    Article  CAS  Google Scholar 

  • Michalak I, Chojnacka K, Witek-Krowiak A (2013) State of the art for the biosorption process—a review. Appl Biochem Biotechnol 170:1389–1416. https://doi.org/10.1007/s12010-013-0269-0

    Article  CAS  Google Scholar 

  • Mitić Ž, Stolić A, Stojanović S, Najman S, Ignjatović N, Nikolić G, Trajanović M (2017) Instrumental methods and techniques for structural and physicochemical characterization of biomaterials and bone tissue: a review. Mater Sci Eng 79:930–949. https://doi.org/10.1016/j.msec.2017.05.127

    Article  CAS  Google Scholar 

  • Mohan S, Oluwafemi O, Kalarikkal N, Thomas S, Songca S (2016) Biopolymers-application in nanoscience and nanotechnology. In: Recent advances in biopolymers. https://doi.org/10.5772/62225

    Chapter  Google Scholar 

  • Ogbonna C (2016) Production of food colourants by filamentous fungi. Afr J Microbiol Res 10:960–971. https://doi.org/10.5897/AJMR2016.7904

    Article  CAS  Google Scholar 

  • Osorio-Delgado M, Henao-Tamayo L, Velásquez-Cock J, Cañas-Gutierrez A, Restrepo-Múnera L, Gañán-Rojo P, Zuluaga-Gallego R, Ortiz-Trujillo I, Castro-Herazo C (2017) Aplicaciones biomédicas de biomateriales poliméricos. Dyna 84:201–241. https://doi.org/10.15446/dyna.v84n201.60466

    Article  Google Scholar 

  • Ospina Álvarez S, Ramírez Cadavid D, Escobar Sierra D, Ossa Orozco P, Rojas Vahos D, Zapata Ocampo P, Atehortúa L (2014) Comparison of extraction methods of chitin from Ganoderma lucidum mushroom obtained in submerged culture. Biomed Res Int 2014:1–7. https://doi.org/10.1155/2014/169071

    Article  CAS  Google Scholar 

  • Pengkumsri N, Sivamaruthi B, Sirilun S, Peerajan S, Kesika P, Chaiyasut K, Chaiyasut C (2017) Extraction of β-glucan from Saccharomyces cerevisiae: comparison of different extraction methods and in vivo assessment of immunomodulatory effect in mice. Food Sci Technol 37:124–130. https://doi.org/10.1590/1678-457x.10716

    Article  Google Scholar 

  • Petre M (2008) Biotechnological process for preparing a Ganoderma lucidum fungal biomass with immunomodulating, antitumour and anti-infectious properties. Romania. RO121679B. State Office for Inventions and Trademarks of Romania

  • Pinu F, Villas-Boas S, Aggio R (2017) Analysis of intracellular metabolites from microorganisms: quenching and extraction protocols. Metabolites 7:53. https://doi.org/10.3390/metabo7040053

    Article  CAS  Google Scholar 

  • Polburee P, Yongmanitchai W, Honda K, Ohashi T, Yoshida T, Fujiyama K, Limtong S (2016) Lipid production from biodiesel-derived crude glycerol by Rhodosporidium fluviale DMKU-RK253 using temperature shift with high cell density. Biochem Eng J 112:208–218. https://doi.org/10.1016/j.bej.2016.04.024

    Article  CAS  Google Scholar 

  • Pontón J (2008) La pared celular de los hongos y el mecanismo de acción de la anidulafungina. Rev Iberoam Micol 25:78–82. https://doi.org/10.1016/S1130-1406(08)70024-X

    Article  Google Scholar 

  • Prigione V, Varese G, Casieri L, Voyron S, Bertolotto A, and Filipello V (2008) Use of Cunninghamella elegans Lendner in methods for treating industrial wastewaters containing dyes. United States. US7790031B2. United States Patent and Trademark Office

  • Przystaś W, Zabłocka-Godlewska E, Grabińska-Sota E (2018) Efficiency of decolorization of different dyes using fungal biomass immobilized on different solid supports. Braz J Microbiol 49:285–295. https://doi.org/10.1016/j.bjm.2017.06.010

    Article  CAS  Google Scholar 

  • Puchana-Rosero M, Lima E, Ortiz-Monsalve S, Mella B, Da Costa D (2017) Fungal biomass as biosorbent for the removal of Acid Blue 161 dye in aqueous solution. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-016-8153-4

  • Raghukumar C, Shailaja S, and Kamat S (2006) Process for removal of polycyclic aromatic hydrocarbons in wastewater and other contaminated sites. United States. US7118906B2. United States Patent and Trademark Office

  • Ramírez-Carmona M, Pereira da Silva M, Ferreira Leite S, Vasco O, Ocampo-López C (2012) Packed bed redistribution system for Cr(III) and Cr(VI) biosorption by Saccharomyces cerevisiae. J Taiwan Inst Chem Eng 43:428–432. https://doi.org/10.1016/j.jtice.2011.12.002

    Article  CAS  Google Scholar 

  • Rendueles M, Díaz M (2014) Biotecnología industrial Arbor:190. https://doi.org/10.3989/arbor.2014.768n4009

  • Renuga M, Krishnakumari S (2015) Quantitative estimation of primary and secondary metabolites in hot aqueous extract of Pleurotus sajor caju. J Pharmacogn Phytochem 4:198–202

    Google Scholar 

  • Ramrakhiani L, Ghosh S, Majumdar S (2016) Surface modification of naturally available biomass for enhancement of heavy metal removal efficiency, upscaling prospects, and management aspects of spent biosorbents: a review. Appl Biochem Biotechnol 180:41–78

    Article  CAS  Google Scholar 

  • Ritala A, Häkkinen S, Toivari M, Wiebe M (2017) Single cell protein-state-of-the-art, industrial landscape and patents 2001-2016. Front Microbiol. https://doi.org/10.3389/fmicb.2017.02009

  • Roco M (2003) Nanotechnology: convergence with modern biology and medicine. Curr Opin Biotech 14:337–346. https://doi.org/10.1016/s0958-1669(03)00068-5

    Article  CAS  Google Scholar 

  • Rovira-Truitt R, Patil N, Castillo F, White J (2009) Synthesis and characterization of biopolymer composites from the inside out. Macromol 42:7772–7780. https://doi.org/10.1021/ma901324b

    Article  CAS  Google Scholar 

  • Ruiz-Herrera J (2016) Fungal cell wall: structure, synthesis, and assembly, Second Edition. CRC Press. 203p. https://doi.org/10.1201/b11873

  • Sagasta, Zadeh, Turral, and Burke (2017) A global water-qualit crisis and the role of agriculture. In: Water pollution from agriculture: a global review. Roma, 1–35

  • Sajith P, Sreedevi, Benjamin (2016) An overview on fungal cellulases with an industrial perspective. J Nutr Food Sci. https://doi.org/10.4172/2155-9600.1000461

  • Salazar A, Yepes M, Correa G, Mora A (2014) Producción de polihidroxialcanoatos a partir de sustratos azucarados inexplorados. Dyna 81:73–77. https://doi.org/10.15446/dyna.v81n185.36844

    Article  Google Scholar 

  • Sanchez-Vazquez S, Hailes H, Evans J (2013) Hydrophobic polymers from food waste: resources and synthesis. Pol Rev 53:627–694. https://doi.org/10.1080/15583724.2013.834933

    Article  CAS  Google Scholar 

  • Seshagiri R, Jalmi P, and Bodke P (2010) A process for production of water soluble melanin using a strain of the fungus Gliocephalotrichum. WO2010064262A2. World Intellectual Property Organization

  • Shahlaei M, Pourhossein A (2013) Biomass of Aspergillus niger: uses and applications. J Rep Pharma Sci 1:67–73

    Google Scholar 

  • Sharma S, Jadhav S, Tiwari K (2017) Diversity of fungal endophytes in Croton sparsiflorus (L.) and their lead biosorption potential. Indian J Environ Prot 37:653–660

    CAS  Google Scholar 

  • Sheng G, Yu H, Li X (2010) Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: a review. Biotechnol Adv 28:882–894. https://doi.org/10.1016/j.biotechadv.2010.08.001

    Article  CAS  Google Scholar 

  • Singh R, Kumar M, Mittal A, and Mehta P (2016) Microbial enzymes: industrial progress in 21st century. 3 Biotech. https://doi.org/10.1007/s13205-016-0485-8

  • Soccol C, Pandey A, and Larroche C (eds.) (2013) Fermentation processes engineering in the food industry, Boca Raton, Fla: London, CRC ; Taylor & Francis

  • Souza P et al (2015) A biotechnology perspective of fungal proteases. Braz J Microbiol 46:337–346

    Article  Google Scholar 

  • Su W (2013) Principles of polymer design and synthesis. Berlin, Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-38730-2

  • Sultana S et al. (2018) 11 - Gelatine, collagen, and single cell proteins as a natural and newly emerging food ingredients. In: Woodhead Publishing (ed) Preparation and processing of religious and cultural foods. Elsevier, pp 215-239

  • Suresh J and Arnaud A (2011) Process for production of high purity Beta-carotene and lycopene crystals from fungal biomass. United States. US9682932B2. United States Patent and Trademark Office

  • Tigini V, Prigione V, Donelli I, Freddi G, Varese G (2012) Influence of culture medium on fungal biomass composition and biosorption effectiveness. Curr Microbiol 64:50–59

    Article  CAS  Google Scholar 

  • Tigini V, Prigione V, Giansanti P, Mangiavillano A, Pannocchia A, Varese G (2010) Fungal biosorption, an innovative treatment for the decolourisation and detoxification of textile effluents. Water 2:550–565. https://doi.org/10.3390/w2030550

    Article  CAS  Google Scholar 

  • Valero M, Ortegón Y, Uscategui Y (2013) Biopolímeros: Avances y Perspectivas. Dyna 80:171–180

    Google Scholar 

  • Velmurugan P, Lee Y, Nanthakumar K, Kamala-Kannan S, Dufossé L, Mapari S, Oh B (2010) Water-soluble red pigments from Isaria farinosa and structural characterization of the main colored component. J Basic Microbiol 50:581–590. https://doi.org/10.1002/jobm.201000097

    Article  CAS  Google Scholar 

  • Vergara-Fernández A, Scott F, Moreno-Casas P, Díaz-Robles L, Muñoz R (2016) Elucidating the key role of the fungal mycelium on the biodegradation of n-pentane as a model hydrophobic VOC. Chemosphere 157:89–96. https://doi.org/10.1016/j.chemosphere.2016.05.034

    Article  CAS  Google Scholar 

  • Versali M, Clerisse F, Bruyere J, and Gautier S (2009) Cell wall derivatives from biomass and preparation thereof. Canada. CA2475258C. Canadian Intellectual Property Office

  • Walker T, Dong M, Cantrell K, and Thies M (2012) Supercritical fluid explosion process to aid fractionation of lipids from biomass. United States. US8148559B1. United States Patent and Trademark Office

  • Wang F, Wu X, Yuan X, Liu Z, Zhang Y, Fu L, Zhu Y, Zhou Q, Wu Y, Huang W (2017) Latest advances in supercapacitors: from new electrode materials to novel device designs. Chem Soc Rev 46:6816–6854. https://doi.org/10.1039/C7CS00205J

    Article  CAS  Google Scholar 

  • Wasser S (2010) Novel Coprinus comatus and Tremella mesenterica mushroom strains, products and extracts thereof and compositions comprising them. United States. US20120124703A1. United States Patent and Trademark Office

  • Xu X, Zhang Z, Huang Q, Chen W (2018) Biosorption performance of multimetal resistant fungus Penicillium chrysogenum XJ-1 for removal of Cu2+ and Cr6+ from aqueous solutions. Geomicrobiol J 35:40–49. https://doi.org/10.1080/01490451.2017.1310331

    Article  CAS  Google Scholar 

  • Yan S, et al. (2018) A preparation method of porous nitrogen-doped carbon material based on fungal biomass and application thereof. China. CN108987122 A1. China National Intellectual Property Administration

  • Yarden, O. and Osherov, N. (2010) The cell wall of filamentous fungi. In: K. A. Borkovich and D. J. Ebbole (eds.), Cellular and molecular biology of filamentous fungi. Am Soc Microbiol. https://doi.org/10.1128/9781555816636.ch17

  • Yellapu S, Bezawada J, Kaur R, Kuttiraja M, Tyagi R (2016) Detergent assisted lipid extraction from wet yeast biomass for biodiesel: a response surface methodology approach. Bioresour Technol 218:667–673. https://doi.org/10.1016/j.biortech.2016.07.011

    Article  CAS  Google Scholar 

  • Yonten V, Alp H, Yildirim N, Yildirim N, Ogedey A (2017) Investigation of optimum conditions for efficient COD reduction in synthetic sulfamethazine solutions by Pleurotus eryngii var. ferulae using response surface methodology. J Taiwan Inst Chem Eng 80:349–355. https://doi.org/10.1016/j.jtice.2017.07.021

    Article  CAS  Google Scholar 

  • Zargar V, Asghari M, Dashti A (2015) A review on chitin and chitosan polymers: structure, chemistry, solubility, derivatives, and applications. ChemBioEng Rev 2:204–226. https://doi.org/10.1002/cben.201400025

    Article  CAS  Google Scholar 

  • Zhou S, Han T, Fosdick L, and Vasina J (2007) Water soluble-glucan, glucosamine, and N-acetylglucosamine compositions and methods for making the same. United States. US7923437B2. United States Patent and Trademark Office

  • Zhu F, Du B, Xu B (2016) A critical review on production and industrial applications of beta-glucans. Food Hydrocoll 52:275–288. https://doi.org/10.1016/j.foodhyd.2015.07.003

    Article  CAS  Google Scholar 

  • Ziegler B, Holt MI, Bawja (2016) Evaluation of physico-mechanical properties of mycelium reinforced green biocomposites made from cellulosic fibers. Appl Eng Agric 32:931–938. https://doi.org/10.13031/aea.32.11830

    Article  Google Scholar 

  • Zlotnikov K, Kazakov A, Vinokurova N, Zlotnikov A (2007) Study of chitin-glucan complexes from the soil micromycete Cephaliophora tropica D3. Appl Biochem Microbiol 43:449–452

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margarita Ramírez-Carmona.

Additional information

Responsible editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isaza-Pérez, F., Ramírez-Carmona, M., Rendón-Castrillón, L. et al. Potential of residual fungal biomass: a review. Environ Sci Pollut Res 27, 13019–13031 (2020). https://doi.org/10.1007/s11356-020-08193-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-08193-6

Keywords

Navigation