Skip to main content

Advertisement

Log in

Surface Modification of Naturally Available Biomass for Enhancement of Heavy Metal Removal Efficiency, Upscaling Prospects, and Management Aspects of Spent Biosorbents: A Review

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Heavy metal pollution in water emerges as a severe socio-environmental problem originating primarily from the discharge of industrial wastewater. In view of the toxic, non-biodegradable, and persistent nature of most of the heavy metal ions, remediation of such components becomes an absolute necessity. Biosorption is an emerging tool for bioremediation that has gained momentum for employing low-cost biological materials with effective metal binding capacities. Even though biological materials possess excellent metal adsorption abilities, they show poor mechanical strength and low rigidity. Other disadvantages include solid–liquid separation problems, possible biomass swelling, lower efficiency for regeneration or reuse, and frequent development of high pressure drop in the column mode that limits its applications under real conditions. To improve the biosorption efficiency, biomasses need to be modified with a simple technique for selective/multi-metal adsorption. This review is intended to cover discussion on biomass modification for enhanced biosorption efficiency, mechanism studies using various instrumental/analytical techniques, and future direction for research and development including the fate of spent biosorbent. In most of the previously published researches, difficulty of the process in scaling up has not been addressed. The current article outlines the application potential of biosorbents in the development of hybrid technology integrated with membrane processes for water and wastewater treatment in industrial scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Wang, J. L., & Chen, C. (2006). Biosorption of heavy metal by Saccharomyces cerevisiae: a review. Biotechnology Advances, 24(5), 427–451.

    Article  CAS  Google Scholar 

  2. Regine, H. S. F., & Volesky, V. B. (2000). Biosorption: a solution to pollution? International Microbiology, 3, 17–24.

    Google Scholar 

  3. Subbaiah, M. V., Kalyani, S., Reddy, G. S., Boddu, V. M., & Krishnaian, A. (2008). Biosorption of Cr(VI) from aqueous solutions using Trametes versicolor Polyporus fungi. Electronic Journal of Chemistry, 5(3), 299–510.

    Google Scholar 

  4. Kocberber, N., & Donmez, G. (2007). Chromium(VI) bioaccumulation capacities of adapted mixed cultures isolated from industrial saline waste waters. Bioresource Technology, 98, 2178–2183.

    Article  CAS  Google Scholar 

  5. Ghorbania, F., Younesia, H., Ghasempouria, S. M., Zinatizadehb, A. A., Aminia, M., & Daneshia, A. (2008). Application of response surface methodology for optimization of cadmium biosorption in an aqueous solution by Saccharomyces cerevisiae. Chemical Engineering Journal, 145, 267–275.

    Article  CAS  Google Scholar 

  6. Arief, V. O., Trilestari, K., Sunarso, J., Indraswati, N., & Ismadji, S. (2008). Recent progress on biosorption of heavy metals from liquids using low cost biosorbents: characterization, biosorption parameters and mechanism studies. Clean, 36(12), 937–962.

    CAS  Google Scholar 

  7. Vijayaraghavan, K., & Yun, Y. S. (2008). Bacterial biosorbents and biosorption. Biotechnology Advances, 26, 266–291.

    Article  CAS  Google Scholar 

  8. Park, D., Yun, Y. S., & Park, J. M. (2010). The past, present, and future trends of biosorption. s Biotechnology and Bioprocess Engineering, 15, 86–102.

  9. Kang, S. Y., Lee, J. U., & Kim, K. M. (2007). Biosorption of Cr(III) and Cr(VI) on to the cell surface of Pseudomonas aeruginosa. Biochemical Engineering Journal, 36, 54–58.

    Article  CAS  Google Scholar 

  10. Davis, T. A., Volesky, B., & Mucci, A. (2003). A review of the biochemistry of heavy metal biosorption by brown algae. Water Research, 37, 4311–4330.

    Article  CAS  Google Scholar 

  11. Fowle, D. A., Fein, J. B., & Martin, A. M. (2000). Experimental study of uranyl adsorption onto Bacillus subtilis. Environmental Science & Technology, 34, 3737–3741.

    Article  CAS  Google Scholar 

  12. Bai, R. S., & Abraham, T. E. (2002). Studies on enhancement of Cr(VI) biosorption by chemically modified biomass of Rhizopus nigricans. Water Research, 36(5), 1224–1236.

    Article  CAS  Google Scholar 

  13. Göksungur, Y., Uren, S., & Güvenc, U. (2005). Biosorption of cadmium and lead ions by ethanol treated waste baker’s yeast biomass. Bioresource Technology, 42, 91–94.

    Google Scholar 

  14. Li, H., Lin, Y., Guan, W., Chang, J., Xu, L., Guo, J., & Wei, G. (2010). Biosorption of Zn(II) by live and dead cells of Streptomyces ciscaucasicus strain CCNWHX 72-14. Journal of Hazardous Materials, 179, 151–159.

    Article  CAS  Google Scholar 

  15. Bahari, Z. M., Altowayti, W. A. H., Ibrahim, Z., Jaafar, J., & Shahir, S. (2013). Biosorption of As(III) by non-living biomass of an arsenic-hypertolerant Bacillus cereus strain SZ2 isolated from a gold mining environment: equilibrium and kinetic study. Applied Biochemistry Biotechnology, 171, 2247–2261.

    Article  CAS  Google Scholar 

  16. Park, D., Yun, Y.-S., & Park, J. M. (2005). Studies on hexavalent chromium biosorption by chemically treated biomass of Ecklonia sp. Chemosphere, 60, 1356–1364.

    Article  CAS  Google Scholar 

  17. Yang, L., & Chen, J. P. (2008). Biosorption of hexavalent chromium onto raw and chemically modified Sargassum sp. Bioresource Technology, 99, 297–307.

    Article  CAS  Google Scholar 

  18. Ngah, W. S. W., & Hanafiah, M. (2008). Adsorption of copper on rubber (Hevea brasiliensis) leaf powder: kinetic, equilibrium and thermodynamic studies. Biochemical Engineering Journal, 39, 521–530.

    Article  CAS  Google Scholar 

  19. Kapoor, A., & Viraraghavan, T. (1998). Biosorption of heavy metal on Aspergillus niger: effect of pretreatment. Bioresource Technology, 63, 109–113.

    Article  CAS  Google Scholar 

  20. Deepa, K. K., Sathishkumar, M., Binupriya, A. R., Murugesan, G. S., Swaminathan, K., & Yun, S. E. (2006). Sorption of Cr(VI) from diluted solutions and wastewater by live and pretreated biomass of Aspergillus flavus. Chemosphere, 62, 833–840.

    Article  CAS  Google Scholar 

  21. Ramrakhiani, L., Majumdar, R., & Khowala, S. (2011). Removal of hexavalent chromium by heat inactivated fungal biomass of Termitomyces clypeatus: surface characterization and mechanism of biosorption. Chemical Engineering Journal, 171, 1060–1068.

    Article  CAS  Google Scholar 

  22. Ramrakhiani, L., & Khowala, S. (2012). Effect of pretreatment on hexavalent chromium biosorption and multimetal biosorption efficiency of Termitomyces clypeatus biomass. International Journal of Integrative Sciences, Innovation and Technology, Section B – Applied and Technological Sciences, 1(1), 7–15.

    CAS  Google Scholar 

  23. Tunali, S., Kiren, I., & Akar, T. (2005). Chromium(VI) biosorption characteristics of Neurospora crassa fungal biomass. Minerals Engineering, 18, 681–689.

    Article  CAS  Google Scholar 

  24. Bayramoğlu, G., Celik, G., Yalcin, E., Yilmiz, M., & Arica, M. Y. (2005). Modification of surface properties of Lentinus sajor-caju mycelia by physical and chemical methods: evaluation of their Cr6+ removal efficiencies from aqueous medium. Journal of Hazardous Materials, B-119, 219–229.

    Article  CAS  Google Scholar 

  25. Veglio’, F., & Beolchini, F. (1997). Removal of metals by biosorption: a review. Hydrometallurgy, 44, 301–316.

    Article  Google Scholar 

  26. Hu, M. Z. C., & Reeves, M. (1997). Biosorption of uranium by Pseudomonas aeruginosa strain CSU immobilized in a novel matrix. Biotechnology Progress, 13, 60–70.

    Article  CAS  Google Scholar 

  27. Yan, G., & Viraraghavan, T. (2001). Heavy metal removal in a biosorption column by immobilized M. rouxii biomass. Bioresource Technology, 78, 243–249.

    Article  CAS  Google Scholar 

  28. Beolchini, F., Pagnanelli, F., Toro, L., & Veglio’, F. (2003). Heavy metal removal in a biosorption column by immobilized M. rouxii biomass. Hydrometallurgy, 70, 101–112.

    Article  CAS  Google Scholar 

  29. Bai, R. S., & Abraham, T. E. (2003). Studies on chromium(VI) adsorption desorption using immobilized fungal biomass. Bioresource Technology, 87, 17–26.

    Article  Google Scholar 

  30. Xiangliang, P., Jianlong, W., & Daoyong, Z. (2005). Biosorption of Pb(II) by Pleurotus ostreatus immobilized in calcium alginate gel. Process Biochemistry, 2005(40), 2799–2803.

    Article  CAS  Google Scholar 

  31. Sud, D., Mahajan, G., & Kaur, M. P. (2008). Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions—a review. Bioresource Technology, 99, 6017–6027.

    Article  CAS  Google Scholar 

  32. Saha, B., & Orvig, C. (2010). Biosorbents for hexavalent chromium elimination from industrial and municipal effluents. Coordination Chemistry Reviews, 254, 2959–2972.

    Article  CAS  Google Scholar 

  33. Liu, Y., & Liu, Y. J. (2008). Biosorption isotherms, kinetics and thermodynamics. Separation and Purification Technology, 61, 229–242.

    Article  CAS  Google Scholar 

  34. Romera, E., González, F., Bailester, A., Blázquez, M. L., & Mufioz, J. A. (2006). Biosorption with algae: a statistical review. Critical Reviews in Biotechnology, 26, 223–235.

    Article  CAS  Google Scholar 

  35. Sağ, Y. (2001). Biosorption of heavy metals by fungal biomass and modeling of fungal biosorption: a review. Separation and Purification Methods, 30(1), 1–48.

    Article  Google Scholar 

  36. Chuah, T. G., Jumasiah, A., Katayon, S., & Thomas Choong, S. Y. (2005). Rice husk as a potentially low-cost biosorbent for heavy metal and dye removal: an overview. Desalination, 175, 305–316.

    Article  CAS  Google Scholar 

  37. Luo, F., Liu, Y. H., Li, X. M., Xuan, Z. X., & Ma, J. T. (2006). Biosorption of lead ions by chemically-modofied biomass of marine brown algae Laminaria japonica. Chemosphere, 64, 1122–1127.

    Article  CAS  Google Scholar 

  38. Bensah, E. C., & Mensah, M. (2013). Chemical pretreatment methods for the production of cellulosic ethanol: technologies and innovations. International Journal of Chemical Engineering, 719607, 1–21. 10.1155/2013/719607.

    Article  CAS  Google Scholar 

  39. Chaisuksant, Y. (2003). Biosorption of cadmium(II) and copper(II) by pretreated biomass of marine alga Gracilaria fisheri. Environmental Technology, 24, 1501–1508.

    Article  CAS  Google Scholar 

  40. Yan, G., & Viraraghavan, T. (2000). Effect of pretreatment on the bioadsorption of heavy metals on Mucor rouxii. Water SA, 26(1), 119–124.

    CAS  Google Scholar 

  41. Nadeem, R., Hanif, M. A., Shaheen, F., Perveen, S., Zafar, M. N., & Iqbal, T. (2008). Physical and chemical modification of distillery sludge for Pb(II) biosorption. Journal of Hazardous Materials, 150, 335–342.

    Article  CAS  Google Scholar 

  42. Soltani, D. C., Jafari, A. J., & Khorramabadi, G. S. (2009). Investigation of cadmium(II) ions biosorption onto pretreated dried activated sludge. American Journal of Environmental Sciences, 5(1), 41–46.

    Article  CAS  Google Scholar 

  43. Ma, N. N., Wei, P., Wei, L. G., Ma, Y. C., Li, K. L., Feng, K., & Wang, Y. Q. (2013). Enhanced Cu(II) adsorption from aqueous solutions by sawdust (Quercus mongolica) pretreated by ionic liquid–water mixture. Advanced Materials Research, 750–752, 1354–1357.

    Article  CAS  Google Scholar 

  44. Cabuk, A., Ilhan, S., Filik, C., & Caliskan, F. (2005). Pb2+ biosorption by pretreated fungal biomass. Turkish Journal of Biology, 29, 23–28.

    CAS  Google Scholar 

  45. Asaad, J. N., Ikladious, N. E., Awad, F., & Muller, T. (2013). Evaluation of some new hyperbranched polyesters as binding agents for heavy metals. Canadian Journal for Chemical Engineering, 91, 257–263.

    Article  CAS  Google Scholar 

  46. Paravathi, K., Nagendran, R., & Nareshkumar, R. (2007). Lead biosorption onto waste beer yeast by-product, a means to decontaminate effluent generated from battery manufacturing industry. Electronic Journal of Biotechnology, 10(1), 92–105.

    Google Scholar 

  47. Bhatti, H. N. B., Khalid, R., & Hanif, M. A. (2009). Dynamic biosorption of Zn(II) and Cu(II) using pretreated Rosa gruss an teplitz (red rose) distillation sludge. Chemical Engineering Journal, 148, 434–443.

    Article  CAS  Google Scholar 

  48. Shen, L., Xia, J., He, H., Nie, Z. Y., & Qiu, G. Z. (2007). Biosorption mechanism of Cr(VI) onto cells of Synechococcus sp. Journal of Central South University of Technology, 2, 157–162. doi:10.1007/s11771−007−0032−1.

    Article  CAS  Google Scholar 

  49. Sujatha, P., Kalarani, V., & Naresh Kumar, B. (2013). Effective biosorption of nickel(II) from aqueous solutions using Trichoderma viride. Journal of Chemistry, 716098, 1–7. doi:10.1155/2013/716098.

    Article  CAS  Google Scholar 

  50. Yazici, H., Kilic, M., & Solak, M. (2008). Biosorption of copper(II) by Marrubium globosum subsp. globosum leaves powder: effect of chemical pretreatment. Journal of Hazardous Materials, 151, 669–675.

    Article  CAS  Google Scholar 

  51. Deng, S. B., & Ting, Y. P. (2005). Characterization of PEI-modified biomass and biosorption of Cu(II), Pb(II) and Ni(II). Water Research, 39, 2167–2177.

    Article  CAS  Google Scholar 

  52. Yu, J. X., Tong, M., Sun, X. M., & Li, B. H. (2007). A simple method to prepare poly(amic acid)-modified biomass for enhancement of lead and cadmium adsorption. Biochemical Engineering Journal, 33, 126–133.

    Article  CAS  Google Scholar 

  53. Zang, C., Zhang, D., Xiong, J., Lin, H., & Chen, Y. (2014). Preparation of a novel adsorbent and heavy metal ion adsorption. Journal of Engineered Fibers and Fabrics, 9(4), 165–170.

    CAS  Google Scholar 

  54. Deng, S., & Ting, Y. P. (2005). Fungal biomass with grafted poly(acrylic acid) for enhancement of Cu(II) and Cd(II) biosorption. Langmuir, 21, 5940–5948.

    Article  CAS  Google Scholar 

  55. Anayurt, R. A., Sari, A., & Tuzen, M. (2009). Equilibrium, thermodynamic and kinetic studies on biosorption of Pb(II) and Cd(II) from aqueous solution by macrofungus (Lactarius scrobiculatus) biomass. Chemical Engineering Journal, 151, 255–261.

    Article  CAS  Google Scholar 

  56. Jana, A., Bhattacharya, P., Sarkar, S., Majumdar, S., & Ghosh, S. (2015). An ecofriendly approach towards remediation of high lead containing toxic industrial effluent by a combined biosorption and microfiltration process: a total reuse prospect. Desalination and Water Treatment. doi:10.1080/19443994.2015.1004596.

    Google Scholar 

  57. O’Connell, D. W., Birkinshaw, C., & O’Dwyer, T. F. (2008). Heavy metal adsorbents prepared from the modification of cellulose: a review. Bioresource Technology, 99, 6709–6724.

    Article  CAS  Google Scholar 

  58. Zhang, H. K., Lu, H., Wang, J., Liu, G. F., & Zhou, J. T. (2014). Accelerating effect of bio-reduced graphene oxide on decolorization of acid red 18 by Shewanella algae. Applied Biochemistry Biotechnology, 174, 602–611.

    Article  CAS  Google Scholar 

  59. Luo, S., Li, X., Chen, L., Chen, J., Wan, Y., & Liu, C. (2014). Layer-by-layer strategy for adsorption capacity fattening of endophytic bacterial biomass for highly effective removal of heavy metals. Chemical Engineering Journal, 239, 312–321.

    Article  CAS  Google Scholar 

  60. Sjö-strom, E. (1993). Wood chemistry, fundamentals and applications (2nd ed.). San Diego: Academic.

    Google Scholar 

  61. Shin, E. W., & Rowell, R. M. (2005). Cadmium ion sorption onto lignocellulosic biosorbent modified by sulfonation: the origin of sorption capacity improvement. Chemosphere, 60, 1054–1061.

    Article  CAS  Google Scholar 

  62. Gaballah, I., Goy, D., Allain, E., Kilbertus, G., & Thauront, J. (1997). Recovery of copper through decontamination of synthetic solutions using modified barks. Metal and Metallurgical Transactions B, 28, 13–23.

    Article  Google Scholar 

  63. Kadirvelu, K., Kavipriya, M., Karthika, C., Radhika, M., Vennilamani, N., & Pattabhi, S. (2003). Utilization of various agricultural wastes for activated carbon preparation and application for the removal of dyes and metal ions from aqueous solutions. Bioresource Technology, 87, 129–132.

    Article  CAS  Google Scholar 

  64. Park, D., Yun, Y.-S., Jo, J. H., & Park, J. M. (2005). Mechanism of hexavalent chromium removal by dead fungal biomass of Aspergillus niger. Water Research, 39, 533–540.

    Article  CAS  Google Scholar 

  65. Gardea-Torresdey, J. L., Tiemann, K. J., Dokken, K. & Gamez, G. (1998) Adhesion of cells to polystyrene surfaces. In: Proceedings of 1998 Conference on Hazardous Waste Research, Snowbird, Utah, USA, May 18–21, pp. 122–133.

  66. Tiemann, K. J., Gamez, G., Dokken, K., Parsons, J. G., & Gardea-Torresdey, J. L. (2002). Chemical modification and X-ray absorption studies for lead(II) binding by Medicago sativa (alfalfa) biomass. Microchemical Journal, 71, 287–293.

    Article  CAS  Google Scholar 

  67. Min, S. H., Han, J. S., Shin, E. W., & Park, J. K. (2004). Improvement of cadmium ion removal by base treatment of juniper fiber. Water Research, 38, 1289–1295.

    Article  CAS  Google Scholar 

  68. Morita, M., Higuchi, M., & Sakata, I. (1987). Binding of heavy metal ions by chemically modified woods. Journal of Applied Polymer Science, 34, 1013–1023.

    Article  CAS  Google Scholar 

  69. Fourest, E., & Volesky, B. (1996). Contribution of sulfonate groups and alginate to heavy metal biosorption by the dry biomass of Sargassum fluitans. Environmental Science & Technology, 30, 277–282.

    Article  CAS  Google Scholar 

  70. Choi, Y. J., Kang, M. S., & Moon, S. H. (2003). Characterization of semi-interpenetrating polymer network polystyrene cation-exchange membranes. Journal of Applied Polymer Science, 88, 1488–1496.

    Article  CAS  Google Scholar 

  71. Paravathi, K., & Nagendran, R. (2008). Functional groups on waste beer yeast involved in chromium biosorption from electroplating effluent. World Journal of Microbiology and Biotechnology, 24, 2865–2870.

    Article  CAS  Google Scholar 

  72. Han, X., Wong, Y. S., Wong, M. H., & Tam, N. F. Y. (2007). Biosorption and bioreduction of Cr(VI) by a microalgal isolate Chlorella miniata. Journal of Hazardous Materials, 146, 65–72.

    Article  CAS  Google Scholar 

  73. Ramrakhiani, L., & Khowala, S. (2012). Biosorption of biomass of Termitomyces clypeatus I: enhancement of hexavalent chromium removal in aqueous solution by heat pretreatment. International Journal of Integrative Sciences, Innovation and Technology, Section B – Applied and Technological Sciences, 1(1), 37–44.

    CAS  Google Scholar 

  74. Gabr, R. M., Gad-Elrab, S. M. F., Abskharon, R. N. N., Hassan, S. H. A., & Shoreit, A. M. (2009). Biosorption of hexavalent chromium using biofilm of E. coli supported on granulated activated carbon. World Journal of Microbiology and Biotechnology, 25, 1695–1703.

    Article  CAS  Google Scholar 

  75. Daniel, N. O., Chima, E. S., & Chinedu, M. T. (2014). Comparative study of the bioadsorption of cadmium and lead from industrial waste water using melon (Citrullus colocynthis) husk activated with sulphuric acid. American Journal of Environmental Protection, 1(1), 1–8.

    Google Scholar 

  76. Sonde, C. U., & Odoemelam, S. A. (2012). Sorption studies on the use of African breadfruit (Treculia africana) seed hull as adsorbent for the removal of Cu2+, Cd2+ and Pb2+ from aqueous solutions. American Journal of Physical Chemistry, 1(1), 11–21.

    Article  CAS  Google Scholar 

  77. Loukidou, M. X., Zouboulis, A. I., Karapantsios, T. D., & Matis, K. A. (2004). Equilibrium and kinetic modeling of chromium(VI) biosorption by Aeromonas caviae. Colloids and Surfaces A, 242, 93–104.

    Article  CAS  Google Scholar 

  78. Zhou, M., Liu, Y., Zeng, G., Li, X., Xu, W., & Fan, T. (2007). Kinetic and equilibrium studies of Cr(VI) biosorption by dead Bacillus licheniformis biomass. World Journal of Microbiology and Biotechnology, 23, 43–48.

    Article  CAS  Google Scholar 

  79. Nourbakhsh, M., Sag, Y., Ozer, D., Aksu, Z., Kutsal, T., & Caglar, A. (1994). A comparative study of various biosorbents for removal of chromium(VI) ions from industrial waste waters. Process Biochemistry, 29, 1–5.

    Article  CAS  Google Scholar 

  80. Popuri, S. R., Kalyani, S., Kachireddy, S. R., & Krishnaiah, A. (2007). Biosorption of hexavalent chromium from aqueous solution by using prawn pond algae (Sphaeroplea). Indian Journal of Chemistry, 46(A), 284–289.

    Google Scholar 

  81. Huang, C., & Huang, C. P. (1996). Application of Aspergillus oryzae and Rhizopus oryzae for Cu(II) removal. Water Research, 9, 1985–1990.

    Article  Google Scholar 

  82. Niu, H., & Volesky, B. (2003). Characteristics of anionic metal species biosorption with waste crab shells. Hydrometallurgy, 71, 209–215.

    Article  CAS  Google Scholar 

  83. Baral, S. S., Das, S. N., & Rath, P. (2006). Hexavalent chromium removal from aqueous solution by adsorption on treated sawdust. Biochemical Engineering Journal, 31, 216–222.

    Article  CAS  Google Scholar 

  84. Li, Q., Zhai, J., Zhang, W., Wang, M., & Zhou, J. (2006). Kinetic studies of adsorption of Pb(II), Cr(III) and Cu(II) from aqueous solution by sawdust and modified peanut husk. Journal of Hazardous Materials, 141, 163–167.

    Article  CAS  Google Scholar 

  85. Dubey, S. P., & Gopal, K. (2006). Adsorption of chromium(VI) on low cost adsorbents derived from agricultural waste material: a comparative study. Journal of Hazardous Materials, 145, 465–470.

    Article  CAS  Google Scholar 

  86. Nasernejad, B., Zadeh, T. E., Pour, B. B., Bygi, M. E., & Zamani, A. (2005). Comparison for biosorption modeling of heavy metals (Cr(III), Cu(II), Zn(II)) adsorption from wastewater by carrot residues. Process Biochemistry, 40, 1319–1322.

    Article  CAS  Google Scholar 

  87. Noeline, B. F., Manohar, D. M., & Anirudhan, T. S. (2005). Kinetic and equilibrium modeling of lead(II) sorption from water and wastewater by polymerized banana stem in a batch reactor. Separation and Purification Technology, 45, 131–140.

    Article  CAS  Google Scholar 

  88. Wankasi, D., Horsfall, M., Jr., & Spiff, A. I. (2006). Sorption kinetics of Pb2+ and Cu2+ ions from aqueous solution by nipa palm (Nypa fruticans Wurmb) shoot biomass. Electronic Journal of Biotechnology, 9, 587–592.

    Article  CAS  Google Scholar 

  89. El-Sayed, M., & El-Morsy, M. (2004). Cunninghamella echinulata a new biosorbent of metal ions from polluted water in Egypt. Mycologia, 96(6), 1183–1189.

    Article  Google Scholar 

  90. Kuyucak, N., & Volesky, B. (1989). The mechanism of cobalt biosorption. Biotechnology and Bioengineering, 33, 823–831.

    Article  CAS  Google Scholar 

  91. Zhou, D., Zhang, L., & Guo, S. L. (2005). Mechanisms of lead biosorption on cellulose/chitin beads. Water Research, 39, 3755–3762.

    Article  CAS  Google Scholar 

  92. Bhatti, H. N. B., Mumtaz, B., Hanif, M. A., & Nadeem, R. (2007). Removal of Zn(II) ions from aqueous solution using Moringa oleifera Lam. (horseradish tree) biomass. Process Biochemistry, 42, 547–553.

    Article  CAS  Google Scholar 

  93. Ashkenazy, R., Gottlieb, L., & Yannai, S. (1997). Characterization of acetone washed yeast biomass functional groups involved in Pb2+ biosorption. Biotechnology and Bioengineering, 5, 1–10.

    Article  Google Scholar 

  94. Tobin, J. M., Cooper, D. G., & Neufeld, R. J. (1990). Investigation of the mechanism of metal uptake by denatured Rhizopus arrhizus biomass. Enzyme and Microbial Technology, 12, 591–595.

    Article  CAS  Google Scholar 

  95. Li, H., Li, Z., Liu, T., Xiao, X., Peng, Z., & Dang, L. (2008). A novel technology for biosorption and recovery hexavalent chromium in waste water by bio-functional magnetic beads. Bioresource Technology, 99, 6271–6279.

    Article  CAS  Google Scholar 

  96. Bishnoi, N. R., Kumar, R., & Bishnoi, K. (2007). Biosorption of Cr(VI) with Trichoderma viride. Indian Journal of Experimental Biology, 45(7), 657–664.

    CAS  Google Scholar 

  97. Guven, O., Ceyhan, N., & Manav, E. (2005). Utilization in alginate beads for Cu(II) and Ni(II) adsorption of an exopolysaccharide produced by Chryseomonas luteola TEM05. World Journal of Microbiology and Biotechnology, 21, 163–167.

    Article  CAS  Google Scholar 

  98. Sergios, K. P., Fotios, K. K., Evangelos, P. K., Nolan, J. W., Le Deit, H., & Nick, K. K. (2006). Heavy metal sorption by calcium alginate beads from Laminaria digitatalis. Journal of Hazardous Materials, 137, 1765–1772.

    Article  CAS  Google Scholar 

  99. Paul, S., Bera, D., Chattopadhyay, P., & Ray, L. (2006). Biosorption of Pb(II) by Bacillus cereus M116 immobilized in calcium alginate gel. Journal of Hazardous Substance Research, 5, 2–13.

    Google Scholar 

  100. Iqbal, M., & Edyvean, R. G. J. (2004). Alginate coated loofa sponge discs for the removal of cadmium from aqueous solutions. Biotechnology Letters, 26, 165–169.

    Article  CAS  Google Scholar 

  101. Arica, M. Y., & Bayramoğlu, G. (2005). Cr(VI) biosorption from aqueous solutions using free and immobilized biomass of Lentinus sajor-caju: preparation and kinetic characterization. Colloids and Surfaces A: Physicochemical Engineering Aspects, 253, 203–211.

    Article  CAS  Google Scholar 

  102. Garnham, G. W. (1997). The use of algae as metal biosorbents. In J. Wase & C. Forster (Eds.), Biosorbents for metal ions (pp. 11–37). London: CRC.

    Google Scholar 

  103. Fan, Z., & Xiaotao, J. (2002). Determination of Cu, Zn, Fe, Ni and Pb in europia by ICP-AES after preconcentration by saccharomycete immobilized on silica gel. Chemical Journal on Internet, 4, 34–38.

    Google Scholar 

  104. Saifuddin, N., & Raziah, A. Z. (2007). Removal of heavy metals from industrial effluent (baker’s yeast) immobilized in chitosan/lingo-sulphonate matrix. Journal of Applied Sciences Research, 3(12), 2091–2099.

    CAS  Google Scholar 

  105. Li, H., Liu, T., Li, Z., & Dang, L. (2008). Low-cost supports used to immobilized fungi and reliable technique for removal of hexavalent chromium in waste water. Bioresource Technology, 99, 2234–2241.

    Article  CAS  Google Scholar 

  106. Alhakawati, M. S., & Banks, C. J. (2004). Removal of copper from aqueous solution by Ascophyllum nodosum immobilised in hydrophilic polyurethane foam. Journal of Environmental Management, 72, 195–204.

    Article  CAS  Google Scholar 

  107. Tsekova, K., & Ilieva, S. (2001). Copper removal from aqueous solution using Aspergillus niger mycelia in free and polyurethane-bound form. Applied Microbiology and Biotechnology, 55, 636–637.

    Article  CAS  Google Scholar 

  108. Pakshirajan, K., & Swaminathan, T. (2006). Continuous biosorption of Pb, Cu, and Cd by Phanerochaete chrysosporium in a packed column reactor. Soil and Sediment Contamination, 15, 187–197.

    Article  CAS  Google Scholar 

  109. Dias, M. A., Lacerda, I. C. A., Pimentel, P. F., de Castro, H. F., & Rosa, C. A. (2002). Removal of heavy metals by an Aspergillus terreus strain immobilized in a polyurethane matrix. Letters in Applied Microbiology, 34, 46–50.

    Article  CAS  Google Scholar 

  110. Kolishka, T., & Galin, P. (2002). Removal of heavy metals from aqueous solution using Rhizopus delemar mycelia in free and polyurethane-bound form. Zeitschrift für Naturforschung B, 57, 629–633.

    Google Scholar 

  111. Zhang, Y., & Charles, B. (2006). A comparison of the properties of polyurethane immobilized Sphagnum moss, sea weed, sunflower waste and maize for biosorption of Cu, Pb, Zn and Ni in continuous flow packed columns. Water Research, 40, 788–798.

    Article  CAS  Google Scholar 

  112. Wang, J., & Chen, C. (2009). Biosorbents for heavy metals removal and their future. BiotechnologyAdvances, 27, 195–226.

    Google Scholar 

  113. Vianna, L. N. L., Andrade, M. C., & Nicoli, J. R. (2000). Screening of waste biomass from Saccharomyces cerevisiae, Aspergillus oryzae and Bacillus lentus fermentations for removal of Cu, Zn and Cd by biosorption. World Journal of Microbiology and Biotechnology, 16, 437–440.

    Article  CAS  Google Scholar 

  114. Baytak, S., Turker, A. R., & Cevrimli, B. S. (2005). Application of silica gel 60 loaded with Aspergillus niger as a solid phase extractor for the separation/preconcentration of chromium(III), copper(II), zinc(II), and cadmium(II). Journal of Separation Science, 28, 2482–2488.

    Article  CAS  Google Scholar 

  115. Macaskie, L. E., Wates, J. M., & Dean, A. C. R. (1987). Cadmium accumulation by a Citrobacter sp. immobilized on gel and solid supports: applicability to the treatment of liquid wastes containing heavy metal cations. Biotechnology and Bioengineering, 30, 66–73.

    Article  CAS  Google Scholar 

  116. Takehiko, T. (2004). Biosorption and recycling of gold using various microorganisms. The Journal of General and Applied Microbiology, 50, 221–228.

    Article  Google Scholar 

  117. Scott, J. A., & Karanjakar, A. M. (1992). Repeated Cd biosorption by regenerated Enterobacter aerogenes attached to activated carbon. Biotechnology Letters, 14, 737–740.

    Article  CAS  Google Scholar 

  118. Boehm, H. P. (1994). Some aspects of the surface chemistry of carbon blacks and other carbons. Carbon, 32, 759–769.

    Article  CAS  Google Scholar 

  119. Texier, A. C., Andrès, Y., Illemassene, M., & Le Cloirec, P. (2000). Characterization of lanthanide ions binding sites in the cell wall of Pseudomonas aeruginosa. Environmental Science & Technology, 34, 610–615.

    Article  CAS  Google Scholar 

  120. Phoenix, V. R., Martinez, R. E., Konhauser, K. O., & Ferris, F. G. (2002). Characterization and implications of the cell surface reactivity of Calothrix sp. strain KC97. Applied and Environmental Microbiology, 68, 4827–4834.

    Article  CAS  Google Scholar 

  121. Halttunen, T., Tahvonen, R., & Salminen, S. (2007). Rapid removal of cadmium and lead from water by specific lactic acid bacteria. International Journal of Food Microbiology, 114(1), 30–35.

    Article  CAS  Google Scholar 

  122. Parsons, J. G., Hejazi, M., Tiemann, K. J., Henning, J., & Gardea-Torresdey, J. L. (2002). An XAS study of the binding of copper(II), zinc(II), chromium(III) and chromium(VI) to hops biomass. Microchemical Journal, 71, 211–219.

    Article  CAS  Google Scholar 

  123. Sawalha, M. F., Peralta-Videa, J. R., Saupe, G. B., Dokken, K. M., & Gardea-Torresdey, J. L. (2007). Using FTIR to corroborate the identity of functional groups involved in the binding of Cd and Cr to saltbush (Atriplex canescens) biomass. Chemosphere, 66, 1424–1430.

    Article  CAS  Google Scholar 

  124. Deschatre, M., Ghillebaert, F., Guezennec, J., & Colin, C. S. (2013). Sorption of copper(II) and silver(I) by four bacterial exopolysaccharides. Applied Biochemistry Biotechnology, 171, 1313–1327.

    Article  CAS  Google Scholar 

  125. Park, D., Lim, S. R., Yun, Y. S., & Park, J. M. (2007). Reliable evidences that the removal mechanism of hexavalent chromium by natural biomaterials is adsorption-coupled reduction. Chemosphere, 70, 298–305.

    Article  CAS  Google Scholar 

  126. Pavasant, P., Apiratikul, R., Sungkhum, V., Suthiparinyanont, P., Wattanachira, S., & Marhaba, T. F. (2006). Biosorption of Cu2+, Cd2+, Pb2+, and Zn2+ using dried marine green macroalga Caulerpa lentillifera. Bioresource Technology, 97, 2321–2329.

    Article  CAS  Google Scholar 

  127. Lui, T., Li, H., Li, Z., Xiao, X., Chen, L., & Dang, L. (2007). Removal of hexavalent chromium by fungal biomass of Mucor racemosus: influencing factors and removal mechanism. World Journal of Microbiology and Biotechnology, 23, 1685–1693.

    Article  CAS  Google Scholar 

  128. Mungasavalli, D. P., Viraraghavan, T., & Jin, Y. C. (2007). Biosorption of chromium from aqueous solutions by pretreated Aspergillus niger: batch and column studies. Colloids and Surfaces A, 301, 214–223.

    Article  CAS  Google Scholar 

  129. Pan, J. H., Liu, R. X., & Tang, H. X. (2007). Surface reaction of Bacillus cereus biomass and its biosorption for lead and copper ions. Journal of Environmental Science China, 19, 403–408.

    Article  Google Scholar 

  130. Yu, J. X., Tong, M., Sun, X. M., & Li, B. H. (2007). Cystine-modified biomass for Cd(II) and Pb(II) biosorption. Journal of Hazardous Materials, 143, 277–284.

    Article  CAS  Google Scholar 

  131. Doshi, H., Ray, A., & Kothari, I. L. (2007). Biosorption of cadmium by live and dead Spirulina: IR spectroscopic, kinetics, and SEM studies. Current Microbiology, 54, 213–218.

    Article  CAS  Google Scholar 

  132. OuYang, X. K., Yang, L. P., & Wen, Z. S. (2014). Adsorption of Pb(II) from solution using peanut shell as biosorbent in the presence of amino acid and sodium chloride. BioResources, 9(2), 2446–2458.

    Article  CAS  Google Scholar 

  133. Shen, Y. S., Wang, S. L., Huang, S. T., Tzou, Y. M., & Huang, J. H. (2010). Biosorption of Cr(VI) by coconut coir: spectroscopic investigation on the reaction mechanism of Cr(VI) with lignocellulosic material. Journal of Hazardous Materials, 179, 160–165.

    Article  CAS  Google Scholar 

  134. Johnston, C. T., & Wang, S. L. (2001). Application of vibrational spectroscopy in soil and environmental sciences. In J. M. Chalmers & P. R. Griffiths (Eds.), Handbook of vibrational spectroscopy (pp. 3192–3206). London: Wiley.

    Google Scholar 

  135. Samal, R. K., Panda, B. B., Rout, S. K., & Mohanty, M. (1995). Effect of chemical modification on FTIR spectra. I. Physical and chemical behavour of coir. Journal of Applied Polymer Science, 58, 745–752.

    Article  CAS  Google Scholar 

  136. Pandey, K. K. (1999). A study of chemical structures of soft and hardwood and wood polymers by FTIR spectroscopy. Journal of Applied Polymer Science, 71, 1969–1975.

    Article  CAS  Google Scholar 

  137. Yang, H., Yan, R., Chen, H., Lee, D. H., & Zheng, C. (2007). Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel, 86(12–13), 1781–1788.

    Article  CAS  Google Scholar 

  138. Suksabye, P., Thiravetyan, P., Nakbanpote, W., & Chayabutra, S. (2007). Chromium removal from electroplating wastewater by coir pith. Journal of Hazardous Materials, 141, 637–644.

    Article  CAS  Google Scholar 

  139. Hsu, N. H., Wang, S. L., Lin, Y. C., Sheng, G. D., & Lee, J. F. (2009). Reduction of Cr(VI) by crop residue-derived black carbon. Environmental Science & Technology, 43, 8801–8806.

    Article  CAS  Google Scholar 

  140. Hsu, N. H., Wang, S. L., Liao, Y. H., Huang, S. T., Tzou, Y. M., & Huang, Y. M. (2009). Removal of hexavalent chromium from acidic aqueous solutions using rice straw-derived carbon. Journal of Hazardous Materials, 171, 1066–1070.

    Article  CAS  Google Scholar 

  141. Elovitz, M. S., & Fish, W. (1995). Redox interactions of Cr(VI) and substituted phenols: products and mechanism. Environmental Science & Technology, 29, 1933–1943.

    Article  CAS  Google Scholar 

  142. Santos, A., Yustos, P., Quintanilla, A., Rodriguez, S., & Garcia-Ochoa, F. (2002). Route of the catalytic oxidation of phenol in aqueous phase. Applied Catalysis B, 39, 97–113.

    Article  CAS  Google Scholar 

  143. Srivastava, S., & Thakur, I. S. (2007). Evaluation of biosorption potency of Acinetobacter sp. for removal of hexavalent chromium from tannery effluent. Biodegradation, 18, 637–646.

    Article  CAS  Google Scholar 

  144. Gupta, V. K., & Rastogi, A. (2008). Biosorption of lead from aqueous solutions by green algae Spirogyra species: kinetic and equilibrium studies. Journal of Hazardous Materials, 152, 407–414.

    Article  CAS  Google Scholar 

  145. Kumari, P., Sharma, P., Srivastava, S., & Srivastava, M. M. (2006). Biosorption studies on shelled Moringa oleifera Lamarck seed powder: removal and recovery of arsenic from aqueous system. International Journal of Mineral Processing, 78, 131–139.

    Article  CAS  Google Scholar 

  146. Garg, U. K., Kaur, M. P., Garg, V. K., & Sud, D. (2007). Removal of hexavalent chromium from aqueous solution by agricultural waste biomass. Journal of Hazardous Materials, 140, 60–68.

    Article  CAS  Google Scholar 

  147. Putra, W. P., Kamari, A., Yusoff, M. S. N., Ishak, C. F., Azmi, M., Hashim, N., & Isa, I. M. (2014). Biosorption of Cu(II), Pb(II) and Zn(II) ions from aqueous solutions using selected waste materials: adsorption and characterization studies. Journal of Encapsulation and Adsorption Sciences, 4, 25–35.

    Article  CAS  Google Scholar 

  148. Gonzalez-Chavez, C., D’Haen, J., Vangronsveld, J., & Dodd, J. C. (2002). Copper sorption and accumulation by the extraradical mycelium of different Glomus spp. (arbuscular mycorrhizal fungi) isolated from the same polluted soil. Plant and Soil, 240, 287–297.

    Article  CAS  Google Scholar 

  149. Taty-Costodes, V. C., Fauduet, H., Porte, C., & Delacroix, A. (2003). Removal of Cd(II) and Pb(II) ions, from aqueous solutions, by adsorption onto sawdust of Pinus sylvestris. Journal of Hazardous Materials, 105, 121–142.

    Article  CAS  Google Scholar 

  150. Pino, G. H., de Mesquita, L. M. S., Torem, M. L., & Pinto, G. A. S. (2006). Biosorption of heavy metals by powder of green coconut shell. Separation Science and Technology, 41, 3141–3153.

    Article  CAS  Google Scholar 

  151. Liu, Y., & Xu, H. (2007). Equilibrium, thermodynamics and mechanisms of Ni2+ biosorption by aerobic granules. Biochemical Engineering Journal, 35, 174–182.

    Article  CAS  Google Scholar 

  152. Basha, S., Murthy, Z. V. P., & Jha, B. (2008). Sorption of Hg(II) from aqueous solutions onto Carica papaya: application of isotherms. Industrial and Engineering Chemical Research, 47, 980–986.

    Article  CAS  Google Scholar 

  153. Akar, T., Tunali, S., & Kiran, I. (2005). Botrytis cinerea as a new fungal biosorbent for removal of Pb(II) from aqueous solutions. Biochemical Engineering Journal, 25, 227–235.

    Article  CAS  Google Scholar 

  154. Akar, T., Tunali, S., & Cabuk, A. (2007). Study on the characterization of lead(II) biosorption by fungus Aspergillus parasiticus. Applied Biochemistry Biotechnology, 136, 389–405.

    Article  CAS  Google Scholar 

  155. Chen, C., & Wang, J. L. (2008). Investigating the interaction mechanism between zinc and Saccharomyces cerevisiae using combined SEM-EDX and XAFS. Applied Biochemistry Biotechnology, 79, 293–299.

    CAS  Google Scholar 

  156. Pagnanelli, F., Petrangelipapini, M., Toro, L., Trifoni, M., & Veglio, F. (2000). Biosorption of metal ions on Arthrobacter sp.: biomass characterization and biosorption modeling. Environmental Science & Technology, 34, 2773–2778.

    Article  CAS  Google Scholar 

  157. Zouboulis, A. I., Loukidou, M. X., & Matis, K. A. (2004). Biosorption of toxic metals from aqueous solutions by bacteria strains isolated from metal-polluted soils. Process Biochemistry, 39, 909–916.

    Article  CAS  Google Scholar 

  158. Kazy, S. K., Das, A. K., & Sar, P. (2006). Lanthanum biosorption by a Pseudomonas sp.: equilibrium studies and chemical characterization. Journal of Industrial Microbiology and Biotechnology, 33, 773–783.

    Article  CAS  Google Scholar 

  159. Xu, H., & Liu, Y. (2008). Mechanisms of Cd2+, Cu2+ and Ni2+ biosorption by aerobic granules. Separation and Purification Technology, 58, 400–411.

    Article  CAS  Google Scholar 

  160. Lin, Z. Y., Zhou, C. H., Wu, J. M., Zhou, J. Z., & Wang, L. (2005). A further insight into the mechanism of Ag+ biosorption by Lactobacillus sp. strain A09. Spectrochimica Acta, Part A, 61, 1195–1200.

    Article  CAS  Google Scholar 

  161. Vinod, V. T. P., Sashidhar, R. B., & Sukumar, A. A. (2010). Competitive adsorption of toxic heavy metal contaminants by gum kondagogu (Cochlospermum gossypium): a natural hydrocolloid. Colloids and Surfaces. B, Biointerfaces, 75, 490–495.

    Article  CAS  Google Scholar 

  162. Nascente, P. A. P. (2005). Materials characterization by X-ray photoelectron spectroscopy. Journal of Molecular Catalysis A: Chemcal, 228, 145–150.

    Article  CAS  Google Scholar 

  163. Chen, J. P., & Yang, I. (2006). Study of a heavy metal biosorption onto raw and chemically modified Sargassum sp. via spectroscopic and modeling analysis. Langmuir, 22, 8906–8914.

    Article  CAS  Google Scholar 

  164. Yu, J. X., Tong, M., Sun, X. M., & Li, B. H. (2007). Biomass grafted with polyamic acid for enhancement of cadmium(II) and lead(II) biosorption. Reactive and Functional Polymers, 67, 564–572.

    Article  CAS  Google Scholar 

  165. Tong, M., Yu, J. X., Sun, X. M., & Li, B. H. (2007). Polymer modified biomass of baker’s yeast for treating simulated wastewater containing nickel and lead. Polymers for Advance Technologies, 18, 829–834.

    Article  CAS  Google Scholar 

  166. Raize, O., Argaman, Y., & Yannai, S. (2004). Mechanisms of biosorption of different heavy metals by brown marine macroalgae. Biotechnology and Bioengineering, 87, 451–458.

    Article  CAS  Google Scholar 

  167. Deng, L. P., Su, Y., Su, H., Wang, X., & Zhu, X. (2006). Biosorption of copper(II) and lead(II) from aqueous solutions by nonliving green algae Cladophora fascicularis: equilibrium, kinetics and environmental effects. Adsorption – Journal of International Adsorption Society, 12, 267–277.

    Article  CAS  Google Scholar 

  168. Sheng, P. X., Ting, Y. P., Chen, J. P., & Hong, L. (2004). Sorption of lead, copper, cadmium, zinc, and nickel by marine algal biomass: characterization of biosorptive capacity and investigation of mechanisms. Journal of Colloid and Interface Science, 275, 131–141.

    Article  CAS  Google Scholar 

  169. Park, D., Yun, Y. S., & Park, J. M. (2008). XAS and XPS studies on chromium-binding groups of biomaterial during Cr(VI) biosorption. Journal of Colloid and Interface Science, 317, 54–61.

    Article  CAS  Google Scholar 

  170. Vieira, R. S., Oliveira, M. L. M., Guibal, E., Rodríguez-Castellón, E., & Beppu, M. M. (2011). Copper, mercury and chromium adsorption on natural and crosslinked chitosan films: an XPS investigation of mechanism. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 374, 108–114.

    Article  CAS  Google Scholar 

  171. Liu, H., Yang, F., Zheng, Y., Kang, J., Qua, J., & Chen, J. P. (2011). Improvement of metal adsorption onto chitosan/Sargassum sp. composite sorbent by an innovative ion-imprint technology. Water Research, 45, 145–154.

    Article  CAS  Google Scholar 

  172. Xia, L., Xu, X., Zhu, W., Huang, Q., & Chen, W. A. (2015). Comparative study on the biosorption of Cd2+ onto Paecilomyces lilacinus XLA and Mucoromycote sp. XLC. International Journal of Molecular Science, 16, 15670–15687.

    Article  CAS  Google Scholar 

  173. Desimoni, E., Malitesta, C., Zambonin, P. G., & Riviere, J. C. (1988). An X-ray photoelectron spectroscopic study of some chromium–oxygen systems. Surface and Interface Analysis, 13(2-3), 173–179.

    Article  CAS  Google Scholar 

  174. Sawalha, M. F., Gardea-Torresdey, J. L., Parsons, J. G., Saupe, G., & Peralta- Videa, J. R. (2005). Determination of adsorption and speciation of chromium species by saltbush (Atriplex canescens) biomass using a combination of XAS and ICP–OES. Microchemical Journal, 81, 122–132.

    Article  CAS  Google Scholar 

  175. Gardea-Torresdey, J. L., Tiemann, K. J., Armendariz, V., Bess-Oberto, L., Chianelli, R. R., Rios, J., Parsons, J. G., & Gamez, G. (2000). Characterization of Cr(VI) binding and reduction to Cr(III) by the agricultural byproducts of Avena monida (oat) biomass. Journal of Hazardous Materials, 80(1-3), 175–188.

    Article  CAS  Google Scholar 

  176. Li, K. B., Wang, Q. Q., Dang, Y., Wei, H., Luo, Q., & Zhao, F. (2012). Characteristic and mechanism of Cr(VI) biosorption by buckwheat hull from aqueous solutions. Acta Chimica Sinica, 70(7), 929–937.

    Article  CAS  Google Scholar 

  177. Sheng, P. X., Ting, Y. P., & Chen, J. P. (2007). Biosorption of heavy metal ions (Pb, Cu, and Cd) from aqueous solutions by the marine alga Sargassum sp. in single- and multiple-metal systems. Industrial and Engineering Chemical Research, 46, 2438–2444.

    Article  CAS  Google Scholar 

  178. Vithanage, M., Rajapaksha, A. U., Ahmad, M., Uchimiya, M., Dou, X., Alessi, D. S., & Ok, Y. S. (2015). Mechanism of antimony adsorption onto soyabean stover-drived biochar in aqueous solutions. Journal of Environmental Management, 151, 443–449.

    Article  CAS  Google Scholar 

  179. Ong, S. A., Toorisaka, E., & Hirata, M. (2013). Comparative study on kinetic adsorption of Cu(II), Cd(II) and Ni(II) ions from aqueous solutions using activated sludge and dried sludge. Applied Water Science, 3, 321–325.

    Article  CAS  Google Scholar 

  180. Dey, M. D., Shukla, R., Bordoloi, N. K., Doley, R., & Mukhopadhyay, R. (2015). Mechanism of adsorptive removal of methylene blue using dried biomass of Rhizopus oryzae. Applied Biochemistry Biotechnology, 177, 541–555.

    Article  CAS  Google Scholar 

  181. Lu, W. B., Kao, W. C., Shi, J. J., & Chang, J. S. (2008). Exploring multi-metal biosorption by indigenous metal-hyperresistant Enterobacter sp. J1 using experimental design methodologies. Journal of Hazardous Materials, 153, 372–381.

    Article  CAS  Google Scholar 

  182. Chiang, Y. W., Ghyselbrecht, K., Santos, R. M., Martens, J. A., Swennen, R., Cappuyns, V., & Meesschaert, B. (2012). Adsorption of multi-heavy metals onto water treatment residuals: sorption capacities and applications. Chemical Engineering Journal, 200–202, 405–415.

    Article  CAS  Google Scholar 

  183. Tuhy, Ł., Samoraj, M., Michalak, I., & Chojnacka, K. (2014). The application of biosorption for production of micronutrient fertilizers based on waste biomass. Applied Biochemistry Biotechnology, 174, 1376–1392.

    Article  CAS  Google Scholar 

  184. Michalak, I., Chojnacka, K., Dobrzański, Z., Górecki, H., Zielińska, A., Korczyński, M., & Opaliński, S. (2011). Effect of macroalgae enriched with microelements on egg quality parameters and mineral content of eggs, eggshell, blood, feathers and droppings. Journal of Animal Physiology and Animal Nutrition, 95, 374–387.

    Article  CAS  Google Scholar 

  185. Michalak, I., Chojnacka, K., & Witek-Krowiak, A. (2013). State of the art for the biosorption process—a review. Applied Biochemistry Biotechnology, 170, 1389–1416.

    Article  CAS  Google Scholar 

  186. Witkowska, Z., Chojnacka, K., Korczyński, M., Świniarska, M., Saeid, A., Opaliński, S., & Dobrzański, Z. (2014). Soybean meal enriched with microelements by biosorption—a new biological feed supplement for laying hens. Part I. Performance and egg traits. Food Chemistry, 151, 86–92.

    Article  CAS  Google Scholar 

  187. Saeid, A., Chojnacka, K., Korczyński, M., Korniewicz, D., & Dobrzański, Z. (2013). Biomass of Spirulina maxima enriched by biosorption process as a new feed supplement for swine. Journal of Applied Phycology, 25, 667–675.

    Article  CAS  Google Scholar 

  188. Ramrakhiani, L. (2012). Chromium biosorption: toxicity, mechanism, isotherms and commercial potential (pp. 1–220). Germany: Lap-Lambert Academic Publishing. https://www.lap-publishing.com/catalog/details//store/gb/book/978-3-659-22183-5/chromium-biosorption.

    Google Scholar 

  189. Gadd, G. M. (2009). Biosorption: critical review of scientific rationale, environmental importance and significance for pollution treatment. Journal of Chemical Technology and Biotechnology, 84, 13–28.

    Article  CAS  Google Scholar 

  190. Bhattacharya, P., Ghosh, S., Swarnakar, S. & Mukhopadhyay, A. (2015). Reuse of textile effluent for dyeing using combined technology of ceramic microfiltration and surface treated sugarcane bagasse: toxicity evaluation using Channa punctatus as model. Desalination and Water Treatment, 54, 715–735. doi: 10.1080/19443994.2014.887035.

  191. Bhattacharya, P., Ghosh, S. & Mukhopadhyay, A. (2013). Combination technology of ceramic microfiltration and biosorbent for treatment and reuse of tannery effluent from different streams: response of defence system in Euphorbia sp. International Journal of Recycling of Organic Waste in Agriculture 2, 19.

  192. Bhattacharya, P., Ghosh, S., Majumdar, S., Dasgupta, S., & Bandyopadhyay, S. (2011). Biosorbent-assisted ceramic microfiltration process for treatment of herbal pharmaceutical wastewater with high organic loading. International Journal of Environmental Technology and Management, 14(1-4), 132–146.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sourja Ghosh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramrakhiani, L., Ghosh, S. & Majumdar, S. Surface Modification of Naturally Available Biomass for Enhancement of Heavy Metal Removal Efficiency, Upscaling Prospects, and Management Aspects of Spent Biosorbents: A Review. Appl Biochem Biotechnol 180, 41–78 (2016). https://doi.org/10.1007/s12010-016-2083-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2083-y

Keywords

Navigation