Skip to main content
Log in

An Experimental Method to Determine the Tensile Strength of Concrete at High Rates of Strain

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

In the present work, dynamic tensile strength of concrete is experimentally investigated by means of spalling tests. Based on extensive numerical simulations, the paper presents several advances to improve the processing of spalling tests. The striker is designed to get a more uniform tensile stress field in the specimen. Three methods proposed in the literature to deduce the dynamic strength of the specimen are discussed as well as the use of strain gauges and a laser extensometer. The experimental method is applied to process data of several tests performed on wet micro-concrete at strain rates varying from 30 to 150/s. A significant increase of the dynamic tensile strength with strain-rate is observed and compared with data of the literature. In addition, post-mortem studies of specimens are carried to improve the analysis of damage during spalling tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Goldsmith W, Polivka M, Yang T (1966) Dynamic behavior of concrete. Exp Mech 6(2):65–79

    Article  Google Scholar 

  2. Birkimer DL, Lindermann R (1971) Dynamic tensile test of concrete materials. ACI J 68(8):47–49

    Google Scholar 

  3. Malvar LJ, Ross CA (1998) Review of strain rate effects for concrete in tension. ACI Mater J 95(6):735–739

    Google Scholar 

  4. Toutlemonde F (1994) Ph.D. thesis: Résistance au choc des structures en béton : du comportement du matériau au calcul des ouvrages. LCPC, Paris

    Google Scholar 

  5. Rossi P (1991) A physical phenomenon which can explain the material behaviour of concrete under high strain rates. Mater Struct 24:422–424

    Article  Google Scholar 

  6. Körmeling HA, Zielinski AJ, Reinhardt HW (1980) Experiments on concrete under single and repeated uniaxial impact tensile loading. Stevin Report 5-80-3, Delft

  7. Zielinski AJ (1982) Ph.D. thesis: fracture of concrete and mortar under uniaxial impact tensile loading. Delft University of Technology

  8. McVay MK (1988) Spall damage of concrete structures. Technical Report SL-88-22, US Army Corps of Engineers, Waterways Experiment Station, Vicksburg, Miss., USA

  9. Klepaczko JR, Brara A (2001) An experimental method for dynamic tensile testing of concrete by spalling. Int J Impact Eng 25:387–409

    Article  Google Scholar 

  10. Schuler H, Mayrhofer C, Thoma K (2006) Spall experiments for the measurement of the tensile strength and fracture energy of concrete at high strain rates. Int J Impact Eng 32:1635–1650

    Article  Google Scholar 

  11. Novikov SA, Divnov II, Ivanov AG (1966) The study of fracture of steel, aluminium and copper under explosive loading. Fizika Metallov i Metallovedeniye 21(4)

  12. Vegt I, Weerheijm J (2006) Dynamic response of concrete at high loading rates. A new Hopkinson bar device. In Proc Int Symp. Brittle Matrix Composites 8, Warsaw

  13. Weerheijm J, Van Doormaal JCAM (2007) Tensile failure of concrete at high loading rates: new test data on strength and fracture energy from instrumented spalling tests. Int J Impact Eng 34:609–626

    Article  Google Scholar 

  14. Forquin P (2003) Ph.D. thesis: Endommagement et fissuration de matériaux fragiles sous impact balistique, rôle de la microstructure. LMT, Cachan

    Google Scholar 

  15. Bernier G, Dalle JM (1998) Rapport d’essai de caractérisation des mortiers, Science Pratique S.A.

  16. Gary G, Klepaczko JR (1992) Essai de compression dynamique sur béton, GRECO Geomaterial scientific report, 105–118

  17. Gatuingt F (1999) Ph.D. thesis: Prévision de la rupture des ouvrages en béton sollicités en dynamique rapide. LMT, Cachan

    Google Scholar 

  18. Buzaud E (1998) DGA Centre d’Etudes de Gramat, Report: Performances mécaniques et balistiques du microbéton MB50

  19. Forquin P, Gary G, Gatuingt F (2008) A testing technique for concrete under confinement at high rates of strain. Int J Impact Eng 35:425–446

    Article  Google Scholar 

  20. Forquin P, Safa K, Gary G (2009) Influence of free water on the quasi-static and dynamic strength of concrete in confined compression tests, Cement Con. Res. Submitted for publication

  21. Frew DJ, Forrestal MJ, Chen W (2001) Pulse shaping techniques for testing brittle materials with a split Hopkinson pressure bar. Exp Mech 42(1)

  22. Song B, Chen W (2004) Loading and unloading split Hopkinson pressure bar pulse shaping techniques for dynamic hysteretic loops. Exp Mech 44(6)

  23. Chen W, Luo H (2004) Dynamic compressive responses of intact and damaged ceramics from a single split Hopkinson pressure bar experiment. Exp Mech 44(3)

  24. Wu H, Zhang Q, Huang F, Jin Q (2005) Experimental and numerical investigation on the dynamic tensile strength of concrete. Int J Impact Eng 32:605–617

    Article  Google Scholar 

  25. Galvez Diaz-Rubio F, Rodriguez Perez J, Sanchez Galvez V (2002) The spalling of long bars as a reliable method of measuring the dynamic tensile strength of ceramics. Int J Impact Eng 27:161–177

    Article  Google Scholar 

  26. Grady DE, Kipp ME (1980) Oil shale fracture and fragmentation at high rates of loading, SAND-76-0563C. Sandia Report

  27. Denoual C, Hild F (2000) A damage model for the dynamic fragmentation of brittle solids. Comp Methods Appl Mech Eng 183:247–258

    Article  MATH  Google Scholar 

  28. Hild F, Denoual C, Forquin P, Brajer X (2003) On the probabilistic-deterministic transition involved in a fragmentation process of brittle materials. Comput Struct 81(12):1241–1254

    Article  Google Scholar 

  29. Forquin P, Hild F (2008) Dynamic fragmentation of an ultra-high strength concrete during Edge-On Impact tests, ASCE Journal of Engineering Mechanics. ASCE J Eng Mech 134(4):302–315

    Article  Google Scholar 

  30. Forquin P, Hild F. A probabilistic damage model of the dynamic fragmentation process in brittle materials, Advances in Applied Mechanics, Submitted for publication

  31. Bischoff PH, Perry SH (1991) Compressive behaviour of concrete at high strain rates. Mater Struct 24:425–450

    Article  Google Scholar 

  32. Schmidt JM (2003) Ph.D. thesis: high pressure and strain-rate behaviour of cementious materials: experiments and elastic/viscoplastic modelling. University of Florida, USA

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to I. Vegt from TNO, Professor F. Hild from LMT-Cachan, Professors J.R. Klepaczko and L. Toth from LPMM and to Délégation Générale pour l’Armement - Centre d’Etudes de Gramat for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Forquin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erzar, B., Forquin, P. An Experimental Method to Determine the Tensile Strength of Concrete at High Rates of Strain. Exp Mech 50, 941–955 (2010). https://doi.org/10.1007/s11340-009-9284-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-009-9284-z

Keywords

Navigation