Skip to main content
Log in

Circadian rhythm effect on military physical fitness and field training: a narrative review

  • Review
  • Published:
Sport Sciences for Health Aims and scope Submit manuscript

Abstract

Background

Disruption of the circadian rhythm also has significant influences on the exercise function. Therefore, the aim of this study was to review the effects of circadian rhythm on physical fitness and athletic performance in military personnel.

Methodology

An online search was done in web of science (WoS), Ovid, Scopus and PubMed (MeSH) databases with the following combination of keywords: “chronobiology” AND “performance of military” AND “exercise”.

Results

A total of articles were identified, physical fitness and sport performance of military forces is severely affected by the science of chronobiology and 24-h circadian rhythm. In humans, these articles showed circadian rhythm with affects on performance of various organs in the body, such that the body temperature, heart rate, hormonal secretion, electrolyte excretion, blood pressure, plasma tyrosine concentrations, free amino acids, cholesterol production and even behavior can affect physical fitness and athletic performance in the military force.

Conclusions

Based on the analyzed articles, it is concluded that circadian rhythm has a significant effect on exercise performance, aerobic and anaerobic power, muscular endurance and flexibility, and hormonal secretion. For this reason, it is recommended to the organizers of the competitions and coaches should take into consideration the effects of circadian rhythm on the athletic performance of the military, the scheduling of competitions and exercises.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Pihlainen K et al (2020) Effects of baseline fitness and BMI levels on changes in physical fitness during military service. J Sci Med Sport 23(9):841–845

    Article  PubMed  Google Scholar 

  2. Nikroo H, Barancheshme M (2014) The comparison of effects of aerobic interval and continuous training program on maximal oxygen consumption, body mass index, and body fat percentage in officer students. J Milit Med 15(4):245–251

    Google Scholar 

  3. Rahmani R et al (2012) Military medicine's role in the armed forces and the need to develop specialized education programs in Iran military medicine. J Milit Med 13(4):247–252

    Google Scholar 

  4. Najafi Mehri S et al (2010) Epidemiology of physical injuries resulted from military training course. J Milit Med 12(2):89–92

    Google Scholar 

  5. Aghda AK et al (2018) Evaluation of Military Optimal Performance Challenge (MOPC) test in military students at a training center, Tehran, Iran. J Milit Med 20(2):181–188

    Google Scholar 

  6. Arabzadeh E, Mirdar S, Fathi Z (2015) Measurement of levels of lung HIF-1α protein in response to tapering for 14-and 21-day with nigella sativa supplementation in maturing rat, with histological study. Sport Sci Health 11(2):195–202

    Article  Google Scholar 

  7. Grandou C et al (2019) The effects of sleep loss on military physical performance. Sports Med 49(17):1–14

    Google Scholar 

  8. Roenneberg T, Klerman EB (2019) Chronobiology. Somnologie 23(3):142–146

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wilms B et al (2020) Chronobiological aspects of sleep restriction modulate subsequent spontaneous physical activity. Physiol Behav 215:112795

    Article  CAS  PubMed  Google Scholar 

  10. Seo DY et al (2020) Circadian modulation of the cardiac proteome underpins differential adaptation to morning and evening exercise training: an LC–MS/MS analysis. Pflüg Arch Eur J Physiol 472(2):259–269

    Article  CAS  Google Scholar 

  11. Roenneberg T, Wirz-Justice A, Merrow M (2003) Life between clocks: daily temporal patterns of human chronotypes. J Biol Rhythms 18(1):80–90

    Article  PubMed  Google Scholar 

  12. Kline CE et al (2007) Circadian variation in swim performance. J Appl Physiol 102(2):641–649

    Article  PubMed  Google Scholar 

  13. Waterhouse J et al (2005) The circadian rhythm of core temperature: origin and some implications for exercise performance. Chronobiol Int 22(2):207–225

    Article  PubMed  Google Scholar 

  14. Teo W, Newton MJ, McGuigan MR (2011) Circadian rhythms in exercise performance: implications for hormonal and muscular adaptation. J Sports Sci Med 10(4):600

    PubMed  PubMed Central  Google Scholar 

  15. Thun E et al (2015) Sleep, circadian rhythms, and athletic performance. Sleep Med Rev 23:1–9

    Article  PubMed  Google Scholar 

  16. Rahmaninia F, Mohebi H, Azizi M (2010) Effect of the circadian rhythm on cortisol response and energy expenditure in obese and lean men. Olympic 4:113–132

    Google Scholar 

  17. Refinetti R (2019) Circadian physiology. CRC Press, UK

    Google Scholar 

  18. Reilly T, Garrett R (1998) Investigation of diurnal variation in sustained exercise performance. Ergonomics 41(8):1085–1094

    Article  CAS  PubMed  Google Scholar 

  19. Claustrat B, Brun J, Chazot G (2005) The basic physiology and pathophysiology of melatonin. Sleep Med Rev 9(1):11–24

    Article  PubMed  Google Scholar 

  20. Shirvani H, Ghahreman-Tabrizi K, Sobhani V (2013) Effects of high intensity intermittent exercise on serum immunoglobulin’s and complement system response in youth soccer players. J Birjand Univ Med Sci 20(3):233–243

    Google Scholar 

  21. Shirvani H (2018) Short-term effects of supplementation of coenzyme Q10 on humoral immune response to high intensity intermittent exercise in male soccer players. Koomesh 20(1):122–130

    Google Scholar 

  22. Shirvani H, Sobhani V (2015) The study of immunoglobulin A, G and cortisol serum response in two consecutive soccer match and vitamin C supplements. Razi J Med Sci 22:70–79

    Google Scholar 

  23. Do MTH, Yau K-W (2010) Intrinsically photosensitive retinal ganglion cells. Physiol Rev 90(4):1547–1581

    Article  CAS  PubMed  Google Scholar 

  24. Piccione G et al (2004) Daily rhythm of circulating fat soluble vitamin concentration (A, D, E and K) in the horse. J Circadian Rhythms 2(1):3

    Article  PubMed  PubMed Central  Google Scholar 

  25. Wales J (1990) Principles and practice of endocrinology and metabolism. Arch Dis Child 65(10):1189

    Article  PubMed Central  Google Scholar 

  26. Melhim AF (1993) Investigation of circadian rhythms in peak power and mean power of female physical education students. Int J Sports Med 14(6):303–306

    Article  CAS  PubMed  Google Scholar 

  27. Gekakis N et al (1998) Role of the CLOCK protein in the mammalian circadian mechanism. Science 280(5369):1564–1569

    Article  CAS  PubMed  Google Scholar 

  28. Preitner N et al (2002) The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 110(2):251–260

    Article  CAS  PubMed  Google Scholar 

  29. Miller BH et al (2007) Circadian and CLOCK-controlled regulation of the mouse transcriptome and cell proliferation. Proc Natl Acad Sci USA 104(9):3342–3347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Arabzadeh E, Mirdar S, Moradiani H (2016) Nigella sativa supplementation attenuates exercise-induced bronchoconstriction in the maturing rat: a histometric and histologic study. Comp Clin Pathol 25(1):1–5

    Article  CAS  Google Scholar 

  31. Hodge BA et al (2015) The endogenous molecular clock orchestrates the temporal separation of substrate metabolism in skeletal muscle. Skelet Muscle 5:17

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Dyar KA et al (2014) Muscle insulin sensitivity and glucose metabolism are controlled by the intrinsic muscle clock. Mol Metab 3(1):29–41

    Article  CAS  PubMed  Google Scholar 

  33. Harfmann BD et al (2016) Muscle-specific loss of Bmal1 leads to disrupted tissue glucose metabolism and systemic glucose homeostasis. Skelet Muscle 6:12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Bambaeichi E et al (2005) Influence of time of day and partial sleep loss on muscle strength in eumenorrheic females. Ergonomics 48(11–14):1499–1511

    Article  CAS  PubMed  Google Scholar 

  35. Mohebbi H, Azizi M (2011) Maximal fat oxidation at the different exercise intensity in obese and normal weight men in the morning and evening. J Hum Sport Exerc 6(1):49–58

    Article  Google Scholar 

  36. Jourkesh M et al (2011) The effects of time of day on physical fitness performance in college-aged men. Ann Biol Res 2(2):435–440

    Google Scholar 

  37. Afonso L et al (2006) Maximal heart rate on treadmill at different times. Revista Brasileira de Medicina do Esporte 12(6):285–289

    Article  Google Scholar 

  38. Reilly T, Brooks GA (1986) Exercise and the circadian variation in body temperature measures. Int J Sports Med 7(6):358–362

    Article  CAS  PubMed  Google Scholar 

  39. Souissi N et al (2004) Circadian rhythms in two types of anaerobic cycle leg exercise: force-velocity and 30-s Wingate tests. Int J Sports Med 25(1):14–19

    Article  CAS  PubMed  Google Scholar 

  40. Baxter C, Reilly T (1983) Influence of time of day on all-out swimming. Br J Sports Med 17(2):122–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gifford LS (1987) Circadian variation in human flexibility and grip strength. Aust J Physiother 33(1):3–9

    Article  CAS  PubMed  Google Scholar 

  42. Hill DW, Smith JC (1991) Circadian rhythm in anaerobic power and capacity. Can J Sport Sci 16(1):30–32

    CAS  PubMed  Google Scholar 

  43. Hill DW et al (1992) Effect of time of day on aerobic and anaerobic responses to high-intensity exercise. Can J Sport Sci 17(4):316–319

    CAS  PubMed  Google Scholar 

  44. Arabzadeh E et al (2020) Alteration of follistatin-like 1, neuron-derived neurotrophic factor, and vascular endothelial growth factor in diabetic cardiac muscle after moderate-intensity aerobic exercise with insulin. Sport Sci Health 1–9

  45. Reilly T, Robinson G, Minors DS (1984) Some circulatory responses to exercise at different times of day. Med Sci Sports Exerc 16(5):477–482

    Article  CAS  PubMed  Google Scholar 

  46. Hill DW et al (1988) Effect of the circadian rhythm in body temperature on oxygen uptake. J Sports Med Phys Fit 28(3):310–312

    CAS  Google Scholar 

  47. O’connor P, Davis J (1992) Psychobiologic responses to exercise at different times of day. Med Sci Sports Exerc 24(6):714–719

    PubMed  Google Scholar 

  48. Murray C, Norris D, Bawendi M (1993) Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J Am Chem Soc 115(19):8706–8715

    Article  CAS  Google Scholar 

  49. Marriott J, Hartley H, Sherwood J (1993) Lack of heart rate variation between morning and afternoon exercise testing in coronary artery disease patients. J Appl Physiol 74(3):1012–1015

    Article  CAS  PubMed  Google Scholar 

  50. Atan T, Unver S, Islamoglu I, Cavusoglu G (2017) Endurance performance according to Circadian Cycle. Anthropol 27(1–3):32–36

    Google Scholar 

  51. Hammouda O et al (2013) Time-of-day effects on biochemical responses to soccer-specific endurance in elite Tunisian football players. J Sports Sci 31(9):963–971

    Article  PubMed  Google Scholar 

  52. Hill DW (2014) Morning–evening differences in response to exhaustive severe-intensity exercise. Appl Physiol Nutr Metab 39(2):248–254

    Article  CAS  PubMed  Google Scholar 

  53. Souissi H et al (2012) The effect of training at a specific time-of-day on the diurnal variations of short-term exercise performances in 10- to 11-year-old boys. Pediatr Exerc Sci 24(1):84–99

    Article  PubMed  Google Scholar 

  54. Hayes LD, Bickerstaff GF, Baker JS (2010) Interactions of cortisol, testosterone, and resistance training: influence of circadian rhythms. Chronobiol Int 27(4):675–705

    Article  CAS  PubMed  Google Scholar 

  55. Racinais S et al (2005) Morning versus evening power output and repeated-sprint ability. Chronobiol Int 22(6):1029–1039

    Article  PubMed  Google Scholar 

  56. Sobhani V et al (2018) High-intensity interval training-induced inflammation and airway narrowing of the lung parenchyma in male maturing rats. Comp Clin Pathol 27(3):577–582

    Article  Google Scholar 

  57. Hammouda O et al (2011) Diurnal variations of plasma homocysteine, total antioxidant status, and biological markers of muscle injury during repeated sprint: effect on performance and muscle fatigue—a pilot study. Chronobiol Int 28(10):958–967

    Article  CAS  PubMed  Google Scholar 

  58. Hammouda O et al (2012) High intensity exercise affects diurnal variation of some biological markers in trained subjects. Int J Sports Med 33(11):886–891

    Article  CAS  PubMed  Google Scholar 

  59. Cajochen C (2007) Alerting effects of light. Sleep Med Rev 11(6):453–464

    Article  PubMed  Google Scholar 

  60. Dawson D, Lack L, Morris M (1993) Phase resetting of the human circadian pacemaker with use of a single pulse of bright light. Chronobiol Int 10(2):94–102

    Article  CAS  PubMed  Google Scholar 

  61. Rossi A et al (2015) The effect of chronotype on psychophysiological responses during aerobic self-paced exercises. Percept Motiv Skills 121(3):840–855

    Article  Google Scholar 

  62. Mirdar S, Arabzadeh E, Hamidian G (2015) Effects of two and three weeks of tapering on lower respiratory tract in the maturing rat. Koomesh 16(3):366–375

    Google Scholar 

  63. Facer-Childs ER, Boiling S, Balanos GM (2018) The effects of time of day and chronotype on cognitive and physical performance in healthy volunteers. Sports Med Open 4(1):1–12

    Article  Google Scholar 

  64. Vitale JA, Weydahl A (2017) Chronotype, physical activity, and sport performance: a systematic review. Sports Med 47(9):1859–1868

    Article  PubMed  Google Scholar 

  65. Nourshahi M, Alirezaei F, Bahrpeyma F (2010) Contribution of peripheral and central fatigue in different conditions (gender and time of day differences). J Hum Kinet 25:27–34

    Article  Google Scholar 

  66. Azizi M, Mohebie H (2013) The effect of exercise in the morning and evening on the maximum oxidation fat in obese and normal-weight men. Res Pract Exerc Physiol 10(19):31–42

    Google Scholar 

  67. Forsyth JJ, Reilly T (2005) The combined effect of time of day and menstrual cycle on lactate threshold. Med Sci Sports Exerc 37(12):2046–2053

    Article  CAS  PubMed  Google Scholar 

  68. Martel PJ et al (1962) A study of the roles of adrenocortical steroids and glomerular filtration rate in the mechanism of the diurnal rhythm of water and electrolyte excretion. J Endocrinol 24:159–169

    Article  CAS  PubMed  Google Scholar 

  69. Folkard S et al (1990) Melatonin stabilises sleep onset time in a blind man without entrainment of cortisol or temperature rhythms. Neurosci Lett 113(2):193–198

    Article  CAS  PubMed  Google Scholar 

  70. Atkinson G, Speirs L (1998) Diurnal variation in tennis service. Percept Motiv Skills 86(3 Pt 2):1335–1338

    Article  CAS  Google Scholar 

  71. Hjalmarson HP, Drummond TJ (1988) Long-lived resonance states in n-doped AlGaAs. Phys Rev Lett 60(23):2410–2413

    Article  CAS  PubMed  Google Scholar 

  72. Schmidt R et al (1993) Neuropsychologic correlates of MRI white matter hyperintensities: a study of 150 normal volunteers. Neurology 43(12):2490–2494

    Article  CAS  PubMed  Google Scholar 

  73. Driscoll TR, Grunstein RR, Rogers NL (2007) A systematic review of the neurobehavioural and physiological effects of shiftwork systems. Sleep Med Rev 11(3):179–194

    Article  PubMed  Google Scholar 

  74. Young AJ et al (1998) Exertional fatigue, sleep loss, and negative energy balance increase susceptibility to hypothermia. J Appl Physiol 85(4):1210–1217

    Article  CAS  PubMed  Google Scholar 

  75. Lucas SJ et al (2008) Intensity and physiological strain of competitive ultra-endurance exercise in humans. J Sports Sci 26(5):477–489

    Article  PubMed  Google Scholar 

  76. Van Dongen HP et al (2003) The cumulative cost of additional wakefulness: dose-response effects on neurobehavioral functions and sleep physiology from chronic sleep restriction and total sleep deprivation. Sleep 26(2):117–126

    Article  PubMed  Google Scholar 

  77. Waterhouse J et al (2002) Identifying some determinants of "jet lag" and its symptoms: a study of athletes and other travellers. Br J Sports Med 36(1):54–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. O'Brien P, O'Conner P (2000) Effect of bright light on cycling performance. Med Sci Sports Exerc 32(2):439–447

    Article  CAS  PubMed  Google Scholar 

  79. Atkinson G et al (2005) Effects of daytime ingestion of melatonin on short-term athletic performance. Ergonomics 48(11–14):1512–1522

    Article  CAS  PubMed  Google Scholar 

  80. Nindl BC et al (2002) Physical performance responses during 72 h of military operational stress. Med Sci Sports Exerc 34(11):1814–1822

    Article  PubMed  Google Scholar 

  81. Ohkuwa T, Itoh H, Yamamoto T, Yanagi H, Yamazaki Y, Akimaru T (2001) Effect of varying light intensity on maximal power production and selected metabolic variables. Arch Physiol Biochem 109(5):430–434

    Article  CAS  PubMed  Google Scholar 

  82. Cain SW, Rimmer DW, Duffy JF, Czeisler CA (2007) Exercise distributed across day and night does not alter circadian period in humans. J Biol Rhythms 22(6):534–541

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge from Baqiyatallah University of Medical Science for their supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Shirvani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabzevari Rad, R., Mahmoodzadeh Hosseini, H. & Shirvani, H. Circadian rhythm effect on military physical fitness and field training: a narrative review. Sport Sci Health 17, 43–56 (2021). https://doi.org/10.1007/s11332-020-00692-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11332-020-00692-w

Keywords

Navigation