Skip to main content
Log in

Application of antifungal metabolites from Streptomyces philanthi RL-1-178 for maize grain coating formulations and their efficacy as biofungicide during storage

  • Research
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The major safety risk of maize grain is contamination with mycotoxins. In this study, a maize-coating formulation containing freeze-dried culture filtrate of Streptomyces philanthi RL-1-178 (DCF RL-1-178) was developed and evaluated to prevent the growth of mycotoxins during maize grain storage. In vitro studies using confrontation tests on PDA plates indicated that S. philanthi RL-1-178 inhibited the growth of Aspergillus parasiticus TISTR 3276 (89.0%) and A. flavus PSRDC-4 (95.0%). The maize grain coating formulations containing the DCF RL-1-178 (0, 5, 10, and 15% (v/v)) and the polymer polyvinylpyrrolidone (PVP-K90, 4.0% (w/v)) were tested for their efficacy in In vitro and during 5 months storage. In In vitro assay, maize coating formular containing the optimum concentration (15.0%, v/v) of the DCF RL-1-178 exhibited 54.80% and 54.17% inhibition on the growth of A. parasiticus TISTR 3276 and A. flavus PSRDC-4 respectively. The inhibition was also illustrated by the microstructures of interactions between the coated maize grains with or without the DCF RL-1-178 and the fungal pathogens observed under microscope and SEM. Incorporating the DCF RL-1-178 or fungicidal Metalaxyl® into the polymer PVP-K90 maize grains coating resulted in the complete inhibition of the production of aflatoxin B1 (analysed by HPLC) by the two aflatoxigenic pathogens after 5 months storage at room temperature. However, the shelf-life was shortened to only 3 months during storage at room temperature with 90% relative humidity. Overall, the application of the 10–15% DCF RL-1-178 into the maize grain coating formular provides a new alternative measure to control the mycotoxins during storage for at least 5 months. The In vitro cell cytotoxicity study showed that a concentration of 15% (v/v) or 1000 μg/mL of the DCF RL-1-178 had a strong cytotoxic effect on Vero cells. These findings indicate that DCF RL-1-178 is a potential biofungicide for controlling mycotoxins contamination in maize seed storage for planting, but not maize grain storage for animal feed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Not applicable.

References

  • Accinelli C, Abbas HK, Little NS, Kotowicz JK, Mencarelli M, Shier WT (2016a) A liquid bioplastic formulation for film coating of agronomic seeds. Crop Prot 89:123–128

    Article  CAS  Google Scholar 

  • Accinelli C, Abbas HK, Vicari A, Shier WT (2016b) Leaf application of a sprayable bioplastic-based formulation of biocontrol Aspergillus flavus strains for reduction of aflatoxins in corn. Pest Manag Sci 72:1521–1528

    Article  CAS  PubMed  Google Scholar 

  • Accinelli C, Abbas HK, Little NS, Kotowicz JK, Shier WT (2018) Biological control of aflatoxin production in corn using non-aflatoxigenic Aspergillus flavus administered as a bioplastic-based seed coating. Crop Prot 107:87–92

    Article  Google Scholar 

  • Afsharmanesh H, Perez-Garcia A, Zeriouh H, Ahmadzadeh M, Romero D (2018) Aflatoxin degradation by Bacillus subtilis UTB1 is based on production of an oxidoreductase involved in bacilysin biosynthesis. Food Control 94:48–55

    Article  CAS  Google Scholar 

  • Aliabbasi N, Fathi M, Emam-Djomeh Z (2021) Curcumin: a promising bioactive agent for application in food packaging systems. J Environ Chem Eng 9:105520

    Article  CAS  Google Scholar 

  • Alvarado AM, Zamora-Sanabria R, Granados-Chinchilla F (2017) A focus on aflatoxins in feedstuffs: Levels of contamina-tion, prevalence, control strategies, and impacts on animal health. Aflatoxin-Control Analysis Detection and Health Risks. InTech, UK

    Google Scholar 

  • AOAC (1984) Official methods of analysis of the association of official chemists, 14th edn. The Association of Official Analytical Chemists, Washington, D.C.

    Google Scholar 

  • Bailly S, El Mahgubi A, Carvajal-Campos A, Lorber S, Puel O, Oswald IP, Bailly JD, Orlando B (2018) Occurrence and identification of Aspergillus section flavi in the context of the emergence of aflatoxins in french maize. Toxins 10:525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Battilani P, Toscano P, Van der Fels-Klerx H, Moretti A, Leggieri MC, Brera C, Rortais A, Goumperis T, Robinson T (2016) Aflatoxin B1 contamination in maize in Europe increases due to climate change. Sci Rep 6:24328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boukaew S, Prasertsan P (2014) Suppression of rice sheath blight disease using heat stable culture filtrate of Streptomyces philanthi RM-1-138. Crop Prot 61:1–10

    Article  Google Scholar 

  • Boukaew S, Chuenchit S, Petcharat V (2011) Evaluation of Streptomyces spp. for biological control of Sclerotium root and stem rot and Ralstonia wilt of chili. Biocontrol 56:365–347

    Article  Google Scholar 

  • Boukaew S, Petlamul W, Suyotha W, Prasertsan P (2016) Simultaneous fermentative chitinase and β-1,3 glucanase production from Streptomyces philanthi RM-1-1-38 and their antifungal activity against rice sheath blight disease. Biotechnologia 97:271–284

    CAS  Google Scholar 

  • Boukaew S, Prasertsan P, Troulet C, Bardin M (2017) Biological control of tomato gray mold caused by Botrytis cinerea by using Streptomyces spp. Biocontrol 62:793–803

    Article  CAS  Google Scholar 

  • Boukaew S, Petlamul W, Prasertsan P (2020a) Comparison of the biocontrol efficacy of culture filtrate from Streptomyces philanthi RL-1-178 and acetic acid against Penicillium digitatum, In vitro and in vivo. Eur J Plant Pathol 158:939–949

    Article  CAS  Google Scholar 

  • Boukaew S, Petlamul W, Prasertsan P (2020b) Efficacy of Streptomyces philanthi RL-1-178 culture filtrate against growth and aflatoxin B1 production by two aflatoxigenic fungi on maize seeds. Eur J Plant Pathol 156:1041–1051

    Article  CAS  Google Scholar 

  • Boukaew S, Petlamul W, Prasertsan P (2020c) Tuna condensate waste with molasses as a renewable substrate for antifungal compounds by Streptomyces philanthi RL-1-178 against aflatoxingenic B1 (AFB1) Aspergillus flavus. Waste Biomass Valoriz 11:1321–1331

    Article  CAS  Google Scholar 

  • Boukaew S, Cheirsilp B, Yossan S, Khunjan U, Petlamul W, Prasertsan P (2021) Utilization of palm oil mill effluent as a novel substrate for the production of antifungal compounds by Streptomyces philanthi RM-1-138 and evaluation of its efficacy in suppression of three strains of oil palm pathogen. J Appl Microbiol 132:1990–2003

    Article  PubMed  Google Scholar 

  • Caceres I, Snini S, Puel O, Mathieu F (2018) Streptomyces roseolus, A promising biocontrol agent against Aspergillus flavus, the main aflatoxin B1 producer. Toxins 10:442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campos-Avelar I, Colas de la Noue A, Durand N, Cazals G, Martinez V, Strub C, Schorr-Galindo S (2021) Aspergillus flavus growth inhibition and aflatoxin B1 decontamination by Streptomyces isolates and their metabolites. Toxins 13:340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carlucci A, Raimondo ML, Colucci D, Lops F (2022) Streptomyces albidoflavus strain CARA17 as a biocontrol agent against fungal soil-borne pathogens of fennel plants. Plants 11:1420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen YY, Chen PC, Tsay TT (2016) The biocontrol efficacy and antibiotic activity of Streptomyces plicatus on the oomycete Phytophthora capsici. Biol Control 98:34–42

    Article  Google Scholar 

  • Cheong AM, Tan CP, Nyam KL (2018) Stability of bioactive compounds and antioxidant activities of kenaf seed oil-in-water nanoemulsions under different storage temperatures. J Food Sci 83:2457–2465

    Article  CAS  PubMed  Google Scholar 

  • Chilczuk B, Marciniak B, Stochmal A, Pecio Ł, Kontek R, Jackowska I, Materska M (2020) Anticancer potential and capsianosides identification in lipophilic fraction of sweet pepper (Capsicum annuum L.). Molecules 25:3097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chulze SN (2010) Strategies to reduce mycotoxin levels in maize during storage: a review. Food Addit Contam 27:651–657

    Article  CAS  Google Scholar 

  • Cortés-Rojas D, Beltrán-Acosta C, Zapata-Narvaez Y, Chaparro M, Gómez M, Cruz-Barrera M (2021) Seed coating as a delivery system for the endophyte Trichoderma koningiopsis Th003 in rice (Oryza sativa). Appl Microbiol Biotechnol 105:1889–1904

    Article  PubMed  Google Scholar 

  • Dövényi-Nagy T, Rácz C, Molnár K, Bakó K, Szláma Z, Jóźwiak Á, Farkas Z, Pócsi I, Dobos AC (2020) Pre-harvest modelling and mitigation of aflatoxins in maize in a changing climatic environment—a review. Toxins 12:768

    Article  PubMed  PubMed Central  Google Scholar 

  • Eawsakul K, Chinavinijkul P, Saeeng R, Chairoungdua A, Tuchinda P, Nasongkla N (2017) Preparation and characterizations of RSPP050-loaded polymeric micelles using poly (ethylene glycol)-b-poly (ε-caprolactone) and poly (ethylene glycol)-b-poly (D, L-lactide). Chem Pharm Bull 65:530–537

    Article  CAS  Google Scholar 

  • Fisher DJ, Hayes AL (1984) Studies of mechanisms of metalaxyl fungitoxicity and resistance to metalaxyl. Crop Prot 3:177–185

    Article  CAS  Google Scholar 

  • Fu S, An Z, Wu L, Xiang Z, Deng Z, Liu R, Liu T (2022) Evaluation and optimization of analytical procedure and sample preparation for polar Streptomyces albus J1074 metabolome profiling. Synth Syst Biotechnol 7:949–957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gálvez-Iriqui AC, Cortez-Rocha MO, Burgos-Hernández A, Calderón-Santoyo M, Argüelles-Monal WM, Plascencia-Jatomea M (2019) Synthesis of chitosan biocomposites loaded with pyrrole-2-carboxylic acid and assessment of their antifungal activity against Aspergillus niger. Appl Microbiol Biotechnol 103:2985–3000

    Article  PubMed  Google Scholar 

  • Gong A-D, Dong F-Y, Hu M-J, Kong X-W, Wei F-F, Gong S-J, Liao Y-C (2019) Antifungal activity of volatile emitted from Enterobacter asburiae Vt-7 against Aspergillus flavus and aflatoxins in peanuts during storage. Food Control 106:718

    Article  Google Scholar 

  • Gurtler JB, Keller SE (2019) Microbiological safety of dried spices. Annu Rev Food Sci Technol 10:409–427

    Article  CAS  PubMed  Google Scholar 

  • Hamilton MA (1978) Trimmed spearmam-karber method for estimating median lethal concentrations in toxicity bioassays. Environ Sci Technol 12:417

    Article  Google Scholar 

  • Igarashi M, Takahashi Y, Shitara T, Nakamura H, Naganawa H, Miyake T, Akamatsu Y (2005) Caprazamycins, novel lipo-nucleoside antibiotics, from Streptomyces sp. J Antibiot 58:327–337

    Article  CAS  Google Scholar 

  • International Organization for Standardization ISO 10993-5. 2009. Biological evaluation of medical devices, part 5: tests for In vitro cytotoxicity. Geneva, Switzerland: International Organization for Standardization

  • Islam MR, Jeong YT, Ryu YJ, Song CH, Lee SY (2009) Identification and optimal culture condition of Streptomyces albidoflavus C247 producing antifungal agents against Rhizoctonia solani AG2-2. Mycobiol 27:114–120

    Article  Google Scholar 

  • Jaibangyang S, Nasanit R, Limtong S (2021) Effects of temperature and relative humidity on Aflatoxin B1 reduction in corn grains and antagonistic activities against Aflatoxin-producing Aspergillus flavus by a volatile organic compound-producing yeast, Kwoniella heveanensis DMKU-CE82. Biocontrol 66:433–443

    Article  CAS  Google Scholar 

  • Kaewkham T, Siri HRK, B, (2016) The effect of accelerated seed ageing on cucumber germination following seed treatment with fungicides and microbial biocontrol agents for managing gummy stem blight by Didymella bryoniae. Biocontrol Sci Technol 26:1048–1061

    Article  Google Scholar 

  • Kemung HM, Tan LTH, Khan TM, Chan KG, Pusparajah P, Goh BH, Lee LH (2018) Streptomyces as a prominent resource of future anti-MRSA drugs. Front Microbiol 9:1–26

    Article  Google Scholar 

  • Khan K, Ghazali FM, Mahyudin NA, Samsudin NIP (2021) Biocontrol of aflatoxins using non-aflatoxigenic Aspergillus flavus: a literature review. J Fungi 7:381

    Article  CAS  Google Scholar 

  • Korkasetwit S, Chitropas P, Siri B (2008) Effect of coating substance on coating characterization and quality of super sweet corn seed. Agricultural Sci J 39:218–221

    Google Scholar 

  • Krusong W, Jindaprasert A, Laosinwattana C, Teerarak M (2015) Baby corn fermented vinegar and its vapor control postharvest decay in strawberries. N Z J Crop Hortic Sci 43:193–203

    Article  CAS  Google Scholar 

  • Kumar M, Kumar P, Das P, Solanki R, Kapur CMK (2021) Protection of surplus food from fungal spoilage using Streptomyces spp.: a green approach. Arch Microbiol 203:941–950

    Article  CAS  PubMed  Google Scholar 

  • Lawrence J, Maier DE (2011) Aeration strategy simulations for wheat storage in the sub-tropical region of north India. Trans ASABE 54:1395–1405

    Article  Google Scholar 

  • Le KD, Yu NH, Park AR, Park DJ, Kim CJ, Kim JC (2022) Streptomyces sp. AN090126 as a biocontrol agent against bacterial and fungal plant diseases. Microorganisms 10:791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • LeBlanc N (2022) Bacteria in the genus Streptomyces are effective biological control agents for management of fungal plant pathogens: a meta-analysis. Biocontrol 67:111–121

    Article  CAS  Google Scholar 

  • Lee HJ, Ryu D (2017) Worldwide occurrence of mycotoxins in cereals and cereal-derived food products: public health perspectives of their co-occurrence. J Agric Food Chem 65:7034–7051

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Jiang Y, Ning P, Zheng L, Huang J, Li G, Jiang D, Hsiang T (2011) Suppression of Magnaporthe oryzae by culture filtrates of Streptomyces globisporus JK-1. Biol Control 58:139–214

    Article  CAS  Google Scholar 

  • Li S, Geng X, Chen S, Liu K, Yu S, Wang X, Zhang C, Zhang J, Wen Y, Luo Q, Xu Y, Wang Y (2021) The co-expression of genes involved in seed coat and endosperm development promotes seed abortion in grapevine. Planta 254:87

    Article  CAS  PubMed  Google Scholar 

  • Logrieco A, Battilani P, Camardo Leggieri M, Jiang Y, Haesaert G, Lanubile A, Munkvold GP (2021) Perspectives on global mycotoxin issues and management from the MycoKey Maize Working Group. Plant Dis 105:525–537

    Article  CAS  PubMed  Google Scholar 

  • Luo Y, Liu X, Li J (2018) Updating techniques on controlling mycotoxins—A review. Food Control 89:123–132

    Article  CAS  Google Scholar 

  • Ma Y, Látr A, Rocha I, Freitas H, Vosátka M, Oliveira RS (2019) Delivery of inoculum of rhizophagus irregularis via seed coating in combination with Pseudomonas libanensis for cowpea production. Agronomy 9:33

    Article  CAS  Google Scholar 

  • Mancini V, Romanazzi G (2014) Seed treatments to control seed borne fungal pathogens of vegetable crops. Pest Manag Sci 70:860–868

    Article  CAS  PubMed  Google Scholar 

  • Mander P, Cho SS, Choi YH, Panthi S, Choi YS, Kim HM, Yoo JC (2016) Purification and characterizationof chitinase showing antifungal and biodegradation properties obtained from Streptomyces anulatus CS242. Arch Pharm Res 39:878–886

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Miranda MM, Rosero-Moreano M, Taborda-Ocampo G (2019) Occurrence, dietary exposure and risk assessment of aflatoxins in arepa, bread and rice. Food Control 98:359–366

    Article  CAS  Google Scholar 

  • Mongiano G, Zampieri E, Morcia C, Titone P, Volante A, Terzi V, Tamborini L, Valé G, Monaco S (2021) Application of plant-derived bioactive compounds as seed treatments to manage the rice pathogen Fusarium fujikuroi. Crop Prot 148:105739

    Article  CAS  Google Scholar 

  • Morcia C, Malnati M, Terzi V (2012) In vitro antifungal activity of terpinen-4-ol, eugenol, carvone, 1,8-cineole (eucalyptol) and thymol against mycotoxigenic plant pathogens. Food Addit Contam 29:415–422

    CAS  Google Scholar 

  • Mutungi C, Lamuka P, Arimi S, Gathumbi J, Onyango C (2008) The fate of aflatoxins during processing of maize into muthokoi – A traditional Kenyan food. Food Control 19:714–721

    Article  CAS  Google Scholar 

  • Ng’ang’a J, Mutungi C, Imathiu S, Affognon H (2016) Effect of triple-layerhermetic bagging on mould infection and aflatoxin contamination of maize during multi-month on-farm storage in Kenya. J Stored Prod Res 69:119–128

    Article  Google Scholar 

  • Ngalimat MS, Mohd Hata E, Zulperi D, Ismail SI, Ismail MR, Mohd Zainudin NAI, Saidi NB, Yusof MT (2021) Characterization of Streptomyces spp. from rice fields as a potential biocontrol agent against Burkholderia glumae and rice plant growth promoter. Agronomy 11:1850

    Article  CAS  Google Scholar 

  • Panrapee I, Phakpoom K, Thanapoom M, Nampeung A, Warapa M (2016) Exposur to Aflatoxin B1 in Thailand by consumption of brown and color rice. Mycotoxin Res 32:19–25

    Article  CAS  PubMed  Google Scholar 

  • Prapagdee B, Kuekulvong C, Mongkolsuk S (2008) Antifungal potential of extracellular metabolites produced by Streptomyces hygroscopicus against phytopathogenic fungi. Int J Biol Sci 4:330–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pratiwi C, Rahayu WP, Lioe HN, Herawati D, Broto W, Ambarwati S (2015) The effect of temperature and relative humidity for Aspergillus flavus BIO 2237 growth and aflatoxin production on soybeans. Int Food Res J 22:82–87

    CAS  Google Scholar 

  • Quinn GA, Banat AM, Abdelhameed AM, Banat IM (2020) Streptomyces from traditional medicine: sources of new innovations in antibiotic discovery. J Med Microbiol 69:1040–1048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rehman ZU, Habib F, Zafar S (2002) Nutritional changes in maize (Zea mays) during storage at three temperatures. Food Chem 77:197–201

    Article  CAS  Google Scholar 

  • Rivas-Franco F, Hampton JG, Narciso J, Rostás M, Wessman P, Saville DJ, Glare TR (2020) Effects of a maize root pest and fungal pathogen on entomopathogenic fungal rhizosphere colonization, endophytism and induction of plant hormones. Biol Control 150:104347

    Article  CAS  Google Scholar 

  • Rocha I, Ma Y, Souza-Alonso P, Vosátka M, Freitas H, Oliveira RS (2019) Seed coating: a tool for delivering beneficial microbes to agricultural crops. Front Plant Sci 10:1357

    Article  PubMed  PubMed Central  Google Scholar 

  • Rockland LB (1960) Saturated salt solution for solution for static control of relative humidity between 5 and 40 ℃. Anal Chem 32:1375

    Article  CAS  Google Scholar 

  • Shah WH, Rehman ZU, Kausar T, Hussain A (2002) Storage of wheat with ears. Pakistan J Agric Res 17:206–209

    Google Scholar 

  • Shakeel Q, Lyu A, Zhang J, Wu M, Chen S, Chen W, Li G, Yang L (2016) Optimization of the cultural medium and conditions for production of antifungal substances by Streptomyces platensis 3–10 and evaluation of its efficacy in suppression of clubroot disease (Plasmodiophora brassicae) of oilseed rape. Biol Control 101:59–68

    Article  CAS  Google Scholar 

  • Shakeel Q, Lyu A, Zhang J, Wu M, Li G, Hsiang T, Yang L (2018) Biocontrol of Aspergillus flavus on peanut kernels using Streptomyces yanglinensis 3–10. Front Microbiol 9:1049

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma KK, Singh US, Sharma P, Kumar A, Sharma L (2015) Seed treatments for sustainable agriculture-a review. JANS 7:521–539

    Article  Google Scholar 

  • Sharma RR, Pawar SJ, Lad SD, Mishra GP, Netalkar AS, Rege S (2012) Chapter 149-Fungal Infections of the Central Nervous System. In Schmidek and Sweet Operative Neurosurgical Techniques (Sixth Edition). p.1691

  • Sidhu OP, Chandra H, Behl HM (2009) Occurence of aflatoxins in mahua Madhuca indica Gmel.) seeds: synergistic effect of plant extracts on inhibition of Aspergillus flavus growth and aflatoxin production. Food Chem Toxicol 47:774–777

    Article  CAS  PubMed  Google Scholar 

  • Siri B, Chitropas P, Korkasetwit S (2010) Effect of film coating substance on coating characterization and quality of corn seed. Khon Kaen Agri J 38:29–38

    Google Scholar 

  • Siupka P, Hansen FT, Schier A, Rocco S, Sørensen T, Piotrowska-Seget Z (2021) Antifungal activity and biosynthetic potential of new Streptomyces sp. MW-W600-10 strain isolated from coal mine water. Int J Mol Sci 22:7441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang X, Shao YL, Tang YJ, Zhou WW (2018) Antifungal activity of essential oil compounds (geraniol and citral) and inhibitory mechanisms on grain pathogens (Aspergillus flavus and Aspergillus ochraceus). Molecules 23:2108

    Article  PubMed  PubMed Central  Google Scholar 

  • Tosch D, Waltking AE, Schlesier JF (1984) Comparison of liquid chromatography and high performance thin layer chromatography for determination of aflatoxin in peanut products. J Associ of Anal Chem 67:337–339

    CAS  Google Scholar 

  • Tumukunde E, Ma G, Li D, Yuan J, Qin L, Wang S (2020) Current research and prevention of aflatoxins in China. World Mycotoxin J 13:121–138

    Article  CAS  Google Scholar 

  • US Grain Council (2019) Corn Harvest Quality Report 2018/2019. https://grains.org/corn_report/corn-harvest-quality-report-2018-2019/:

  • VazJauri P, Altier N, Kinkel LL (2016) Streptomyces for sustainability. In: Castro-Sowinski S (ed) Microbial models: From environment to industrial sustainability, microorganism for sustainability 1. Springer, Berlin, pp 251–276

    Google Scholar 

  • Vercelheze AES, Marim BM, Oliveira ALM, Mali S (2019) Development of biodegradable coatings for maize seeds and their application for Azospirillum brasilense immobilization. Appl Microbiol Biotechnol 103:2193–2203

    Article  CAS  PubMed  Google Scholar 

  • Vurukonda SSKP, Giovanardi D, Stefani E (2018) Plant growth promoting and biocontrol activity of Streptomyces spp. as endophytes. Int J Mol Sci 19:952

    Article  PubMed  PubMed Central  Google Scholar 

  • Weaver MA, Abbas HK (2019) Field displacement of aflatoxigenic Aspergillus flavus strains through repeated biological control applications. Front Microbiol 10:1788

    Article  PubMed  PubMed Central  Google Scholar 

  • Yoshinari T, Akiyama T, Nakamura K, Kondo T, Takahashi Y, Muraoka Y, Nonomura Y, Nagasawa H, Sakuda S (2007) Dioctatin A is a strong inhibitor of aflatoxin production by Aspergillus parasiticus. Microbiol 153:2774–2780

    Article  CAS  Google Scholar 

Download references

Funding

This research work was financially supported by the Agricultural Research Development Agency (Public Organization) (PRP6405030400) and Thailand Research Fund (RTA6080010).

Author information

Authors and Affiliations

Authors

Contributions

SB: conceptualization, data curation, supervision, formal analysis, funding acquisition, investigation, methodology, writing—original draft, writing—review & editing. PM: conceptualization, investigation, formal analysis. WP: writing—review & editing. SS: writing—review & editing. SS: investigation, Writing—review & editing. JC: investigation, writing—review & editing. PP: funding acquisition, writing—original draft, writing, writing—review & editing.

Corresponding author

Correspondence to Sawai Boukaew.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boukaew, S., Mahasawat, P., petlamul, W. et al. Application of antifungal metabolites from Streptomyces philanthi RL-1-178 for maize grain coating formulations and their efficacy as biofungicide during storage. World J Microbiol Biotechnol 39, 157 (2023). https://doi.org/10.1007/s11274-023-03604-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-023-03604-5

Keywords

Navigation