Skip to main content
Log in

Utilization of inulin-containing waste in industrial fermentations to produce biofuels and bio-based chemicals

  • Review
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Inulins are polysaccharides that belong to an important class of carbohydrates known as fructans and are used by many plants as a means of storing energy. Inulins contain 20 to several thousand fructose units joined by β-2,1 glycosidic bonds, typically with a terminal glucose unit. Plants with high concentrations of inulin include: agave, asparagus, coffee, chicory, dahlia, dandelion, garlic, globe artichoke, Jerusalem artichoke, jicama, onion, wild yam, and yacón. To utilize inulin as its carbon and energy source directly, a microorganism requires an extracellular inulinase to hydrolyze the glycosidic bonds to release fermentable monosaccharides. Inulinase is produced by many microorganisms, including species of Aspergillus, Kluyveromyces, Penicillium, and Pseudomonas. We review various inulinase-producing microorganisms and inulin feedstocks with potential for industrial application as well as biotechnological efforts underway to develop sustainable practices for the disposal of residues from processing inulin-containing crops. A multi-stage biorefinery concept is proposed to convert cellulosic and inulin-containing waste produced at crop processing operations to valuable biofuels and bioproducts using Kluyveromyces marxianus, Yarrowia lipolytica, Rhodotorula glutinis, and Saccharomyces cerevisiae as well as thermochemical treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Brar SK, Verma M (2014) Enzymes in value-addition of wastes. Nova Science Publishers, Inc., New York

    Google Scholar 

  • Cazetta ML, Martins PMM, Monti R, Contiero J (2005) Yacon (Polymnia sanchifolia) extract as a substrate to produce inulinase by Kluyveromyces marxianus var. bulgaricus. J Food Eng 66(3):301–305

    Article  Google Scholar 

  • Cedeño-Cruz M, Alvarez-Jacobs J (2003) Production of tequila from Agave: historical influences and contemporary processes (Chap. 15). In: Jaques KA, Lyons TP, Kelsall DR (eds) The alcohol textbook, 4th edn. University of Nottingham Press, Nottingham

    Google Scholar 

  • Charoensopharat K, Thanonkeo P, Thanonkeo S, Yamada M (2015) Ethanol production from Jerusalem artichoke tubers at high temperature by newly isolated thermotolerant inulin-utilizing yeast Kluyveromyces marxianus using consolidated bioprocessing. Antonie Van Leeuwenhoek 108(1):173–190. doi:10.1007/s10482-015-0476-5

    Article  CAS  Google Scholar 

  • Chi ZM, Zhang T, Cao TS, Liu XY, Cui W, Zhao CH (2011) Biotechnological potential of inulin for bioprocesses. Bioresour Technol 102(6):4295–4303. doi:10.1016/j.biortech.2010.12.086

    Article  CAS  Google Scholar 

  • Cruz-Guerrero A, García-Peña I, Barzana E, García-Garibay M, Gómez-Ruíz L (1995) Kluyveromyces marxianus CDBB-L-278: a wild inulinase hyperproducing strain. J Ferment Bioeng 80:159–163

    Article  CAS  Google Scholar 

  • Efstathiou I, Reysset G, Truffaut N (1986) A study of inulinase activity in the Clostridium acetobutylicum strain ABKn8. Appl Microbiol Biotechnol 25:143–149

    CAS  Google Scholar 

  • Esquivel P, Jiménez VM (2011) Functional properties of coffee and coffee by-products. Food Res Int 46:488–495

    Article  Google Scholar 

  • Fleming SE, GrootWassink JW (1979) Preparation of high-fructose syrup from the tubers of the Jerusalem artichoke (Helianthus tuberosus L.). CRC Crit Rev Food Sci Nutr 12(1):1–28

    Article  CAS  Google Scholar 

  • Flores JA, Gschaedler A, Amaya-Delgado L, Herrera-López EJ, Arellano M, Arrizon J (2013) Simultaneous saccharification and fermentation of Agave tequilana fructans by Kluyveromyces marxianus yeasts for bioethanol and tequila production. Bioresour Technol 146:267–273

    Article  CAS  Google Scholar 

  • Flores-Gallegos AC, Contreras-Esquivel JC, Morlett-Chávez JA, Cristóbal N, Aguilar CN, Rodríguez-Herrera R (2015) Comparative study of fungal strains for thermostable inulinase production. J Biosci Bioeng 119(4):421–426

    Article  CAS  Google Scholar 

  • Galindo-Leva LÁ, Hughes SR, López-Núñez JC, Jarodsky JM, Erickson A, Lindquist MR, Cox EJ, Bischoff KM, Hoecker EC, Liu S, Qureshi N, Jones MA (2016) Growth, ethanol production, and inulinase activity on various inulin substrates by mutant Kluyveromyces marxianus strains NRRL Y-50798 and NRRL Y-50799. J Ind Microbiol Biotechnol 43:927–939

    Article  Google Scholar 

  • Ganaie MA, Lateef A, Gupta US (2014) Enzymatic trends of fructooligosaccharides production by microorganisms. Appl Biochem Biotechnol 172:2143–2159. doi:10.1007/s12010-013-0661-9

    Article  CAS  Google Scholar 

  • Gao J, Chen L, Yuan W (2012) Effects of carbon sources, oxygenation and ethanol on the production of inulinase by Kluyveromyces marxianus YX01. J BioSci Biotechnol 1(2):155–161

    Google Scholar 

  • Gao J, Yuan W, Li Y, Xiang R, Hou S, Zhong S, Bai F (2015) Transcriptional analysis of Kluyveromyces marxianus for ethanol production from inulin using consolidated bioprocessing technology. Biotechnol Biofuels 8:115. doi:10.1186/s13068-015-0295-y

    Article  Google Scholar 

  • Gao J, Yuan W, Li Y, Bai F, Zhong S, Jiang Y (2016) Application of redox potential control to improve ethanol productivity from inulin by consolidated bioprocessing. Process Biochem 51(10):1544–1551

    Article  CAS  Google Scholar 

  • Hu N, Yuan B, Sun J, Wang SA, Li FL (2012) Thermotolerant Kluyveromyces marxianus and Saccharomyces cerevisiae strains representing potentials for bioethanol production from Jerusalem artichoke by consolidated bioprocessing. Appl Microbiol Biotechnol 95(5):1359–1368. doi:10.1007/s00253-012-4240-8

    Article  CAS  Google Scholar 

  • Hughes SR, López-Núñez JC, Jones MA, Moser BR, Cox EJ, Lindquist M, Galindo-Leva LA, Riaño-Herrera NM, Rodriguez-Valencia N, Gast F, Cedeño DL, Tasaki K, Brown RC, Darzins A, Brunner L (2014) Sustainable conversion of coffee and other crop wastes to biofuels and bioproducts using coupled biochemical and thermochemical processes in a multi-stage biorefinery concept. Appl Microbiol Biotechnol 98(20):8413–8431. doi:10.1007/s00253-014-5991-1

    Article  CAS  Google Scholar 

  • Huitrón C, Pérez R, Sanchez AE, Lappe P, Rocha Zavaleta L (2008) Agricultural waste from the tequila industry as substrate for the production of commercially important enzymes. J Environ Biol 29(1):37–41

    Google Scholar 

  • Huitrón C, Pérez R, Gutiérrez L, Lappe P, Petrosyan P, Villegas J, Aguilar C, Rocha-Zavaleta L, Blancas A (2013) Bioconversion of Agave tequilana fructans by exoinulinases from indigenous Aspergillus niger CH-A-2010 enhances ethanol production from raw Agave tequilana juice. J Ind Microbiol Biotechnol 40(1):123–132

    Article  Google Scholar 

  • Jain SC, Jain PC, Kango N (2012) Production of inulinase from Kluyveromyces marxianus using dahlia tuber extract. Braz J Microbiol 43(1):62–69. doi:10.1590/S1517-83822012000100007

    Article  CAS  Google Scholar 

  • Johansson E, Prade T, Angelidaki I, Svensson S-E, Newson WR, Gunnarsson IB, Hovmalm HP (2015) Economically viable components from Jerusalem artichoke (Helianthus tuberosus L.) in a biorefinery concept. Int J Mol Sci 16(4):8997–9016. doi:10.3390/ijms16048997

    Article  CAS  Google Scholar 

  • Jurgoński A, Milala J, Juśkiewicz J, Zduśczyk Z, Król B (2011) Composition of chicory root, peel, seed and leaf ethanol extracts and biological properties of their non-inulin fractions. Food Technol Biotechnol 49(1):40–47

    Google Scholar 

  • Kango N, Jain SC (2011) Production and properties of microbial inulinases: recent advances. Food Biotechnol 25(3):165–212

    Article  CAS  Google Scholar 

  • Kushi RT, Monti R, Contiero J (2000) Production, purification and characterization of an extracellular inulinase from Kluyveromyces marxianus var. bulgaricus. J Ind Microbiol Biotechnol 25:63–69

    Article  CAS  Google Scholar 

  • Lane MM, Burke N, Karreman R, Wolfe KH, O’Byrne CP, Morrissey JP (2011) Physiological and metabolic diversity in the yeast Kluyveromyces marxianus. Antonie Van Leeuwenhoek 100(4):507–519. doi:10.1007/s10482-011-9606-x

    Article  CAS  Google Scholar 

  • Lertwattanasakul N, Rodrussamee N, Suprayogi, Limtong S, Thanonkeo P, Kosaka T, Yamada M (2011) Utilization capability of sucrose, raffinose and inulin and its less-sensitiveness to glucose repression in thermotolerant yeast Kluyveromyces marxianus DMKU 3-1042. AMB Express 1:20

    Article  Google Scholar 

  • Li H, Foston MB, Kumar R, Samuel R, Gao X, Hu F, Ragauskas AJ, Wyman CE (2012) Chemical composition and characterization of cellulose for Agave as a fast-growing, drought-tolerant biofuels feedstock. RSC Adv 2:4951–4958

    Article  CAS  Google Scholar 

  • Li L, Li L, Wang Y, Du Y, Qin S (2013) Biorefinery products from the inulin-containing crop Jerusalem artichoke. Biotechnol Lett 35:471–477

    Article  CAS  Google Scholar 

  • Looten P, Blanchet D, Vandecasteele JP (1987) The β-fructofuranosidase activities of a strain of Clostridium acetobutylicum grown on inulin. Appl Microbiol Biotechnol 25:419–425

    Article  CAS  Google Scholar 

  • López-Alvarez A, Díaz-Pérez AL, Sosa-Aguirre C, Macías-Rodríguez L, Campos-García J (2012) Ethanol yield and volatile compound content in fermentation of agave must by Kluyveromyces marxianus UMPe-1 comparing with Saccharomyces cerevisiae baker’s yeast used in tequila production. J Biosci Bioeng 113(5):614–618. doi:10.1016/j.jbiosc.2011.12.015

    Article  Google Scholar 

  • Mansouri S, Houbraken J, Samson RA, Frisvad JC, Christensen M, Tuthill DE, Koutaniemi S, Hatakka A, Lankinen P (2013) Penicillium subrubescens, a new species efficiently producing inulinase. Antonie Van Leeuwenhoek 103:1343–1157

    Article  CAS  Google Scholar 

  • Mazutti M, Bender JP, Treichel H, Di Luccio M (2006) Optimization of inulinase production by solid-state fermentation using sugarcane bagasse as substrate. Enzyme Microb Technol 39:56–59

    Article  CAS  Google Scholar 

  • Montoya D, Arévalo C, Gonzales S, Aristizabal F, Schwartz WH (2001) New solvent-producing Clostridium sp. strains, hydrolyzing wide range of polysaccharides are closely related to Clostridium butyricum. J Ind Microbiol Biotechnol 27:329–335

    Article  CAS  Google Scholar 

  • Mussatto SI, Teixeira JA (2010) Increase in the fructooligosaccharides yield and productivity by solid-state fermentation with Aspergillus japonicus using agro-industrial residues as support and nutrient source. Biochem Eng J 53:154–157

    Article  CAS  Google Scholar 

  • Mussatto SI, Teixeira JA (2014) Coffee. In: Teixeira JA, Vincente AA (eds) Engineering aspects of food biotechnology. CRC Press, Taylor & Francis Group, Boca Raton, p 413–428

    Google Scholar 

  • Muthuselvi S, Sathishkumar T, Kumaresan K, Rajeshkumar M (2012) Improved inulinase activity by Penicillium purpurogenum grown in microwave pretreated coffee spent by L16 orthogonal design of experiment. Innov Rom Food Biotechnol 11:44–50

    CAS  Google Scholar 

  • Nava-Cruz NY, Miguel A., Medina-Morales MA, Martinez JL, Rodriguez R, Aguilar CN (2014) Agave biotechnology: an overview. Crit Rev Biotechnol, Early Online: 1–14. doi:10.3109/07388551.2014.923813

  • Neagu C, Bahrim G (2011) Inulinases-a versatile tool for biotechnology. Innov Rom Food Biotechnol 9:1–11

    CAS  Google Scholar 

  • Oiwa H, Naganuma M, Ohnuma S-I (1987) Acetone-butanol production from dahlia inulin by Clostridium pasteurianum var. I-53. Agric Biol Chem Tokyo 51(10):2819–2820

    CAS  Google Scholar 

  • Pandey A, Soccol CR, Selvakumar P, Soccol VT, Krieger N, Fontana JD (1999) Recent developments in microbial inulinases—its production, properties, and industrial applications. Appl Biochem Biotechnol 81:35–52

    Article  CAS  Google Scholar 

  • Pandey A, Soccol CR, Nigam P, Brand D, Mohan R, Roussos S (2000) Biotechnological potential of coffee pulp and coffee husk for bioprocesses. Biochem Eng J 6(2):153–162 450

    Article  CAS  Google Scholar 

  • Patakova P, Linhova M, Rychtera M, Paulova L, Melzoch K (2013) Novel and neglected issues of acetone-butanol-ethanol (ABE) fermentation by clostridia: clostridium metabolic diversity, tools for process mapping and continuous fermentation systems. Biotechnol Adv 31(1):58–67. doi:10.1016/j.biotechadv.2012.01.010

    Article  CAS  Google Scholar 

  • Rawat HK, Ganaie MA, Kango N (2015) Production of inulinase, fructosyltransferase and sucrase from fungi on low-value inulin-rich substrates and their use in generation of fructose and fructo-oligosaccharides. Antonie Van Leeuwenhoek doi:10.1007/s10482-014-0373-3

    Google Scholar 

  • Saber WIA, El-Naggar NE (2009) Optimization of fermentation conditions for the biosynthesis of inulinase by the new source; Aspergillus tamarii and hydrolysis of some inulin containing agro-wastes. Biotechnology 8(4):425–433

    Article  CAS  Google Scholar 

  • Selvakumar P, Pandey A (1999) Solid state fermentation for the synthesis of inulinase from Staphylococcus sp. and Kluyveromyces marxianus. Process Biochem 34:851–858

    Article  CAS  Google Scholar 

  • Singh RS, Bhermi HK (2008) Production of extracellular exoinulinase from Kluyveromyces marxianus YS-1 using root tubers of Asparagus officinalis. Bioresour Technol 99(15):7418–7423

    Article  CAS  Google Scholar 

  • Singh P, Gill PK (2006) Production of inulinases: recent advances. Food Technol Biotechnol 44(2):151–162

    CAS  Google Scholar 

  • Singh RS, Singh RP (2010) Fructooligosaccharides from inulin as prebiotics. Food Technol Biotechnol 48(4):435–450

    CAS  Google Scholar 

  • Singh RS, Dhaliwal R, Puri M (2006) Production of inulinase from Kluyveromyces marxianus YS-1 using root extract of Asparagus racemosus. Process Biochem 41:1703–1707

    Article  CAS  Google Scholar 

  • Singh RS, Dhaliwal R, Puri M (2007a) Partial purification and characterization of exoinulinase from Kluyveromyces marxianus YS-1 for preparation of high-fructose syrup. J Microbiol Biotechnol 17(5):733–738

    CAS  Google Scholar 

  • Singh RS, Sooch BS, Puri M (2007b) Optimization of medium and process parameters for the production of inulinase from a newly isolated Kluyveromyces marxianus YS-1. Bioresour Technol 98:2518–2525

    Article  CAS  Google Scholar 

  • Treichel H, de Oliveira D, Lerin L, Astolfi V, Mazutti MA, Di Luccio M, Vladimir Oliveira JV J (2012) A review on the production and partial characterization of microbial inulinases. Global J Biochem 3:7

    Google Scholar 

  • Ujor V, Bharathidasan AK, Michel FC Jr, Ezeji TC, Cornish K (2015) Butanol production from inulin-rich chicory and Taraxacum kok-saghyz extracts: determination of sugar utilization profile of Clostridium saccharobutylicum P262. Ind Crops Prod 76:739–748

    Article  CAS  Google Scholar 

  • Van den Ende W (2013) Multifunctional fructans and raffinose family oligosaccharides. Front Plant Sci 4:247. doi:10.3389/fpls.2013.00247

    Article  Google Scholar 

  • Villegas-Silva PA, Toledano-Thompson T, Canto-Canché BB, Larqué-Saavedra A, Barahona-Pérez LF (2014) Hydrolysis of Agave fourcroydes Lemaire (henequen) leaf juice and fermentation with Kluyveromyces marxianus for ethanol production. BMC Biotechnol 14:14

    Article  Google Scholar 

  • Vranesic D, Kurtanjek Z, Santos AMP, Maugeri F (2002) Optimisation of inulinase production by Kluyveromyces bulgaricus. Food Technol Biotechnol 40:67–73

    CAS  Google Scholar 

  • Wang SA, Li FL (2013) Invertase SUC2 is the key hydrolase for inulin degradation in Saccharomyces cerevisiae. Appl Environ Microbiol 79(1):403–406

    Article  CAS  Google Scholar 

  • Wang ZP, Fu WJ, Xu HM, Chi ZM (2014) Direct conversion of inulin into cell lipid by an inulinase-producing yeast Rhodosporidium toruloides 2F5. Bioresour Technol 161:131–136

    Article  CAS  Google Scholar 

  • Wang J, Zhang H, Bao J (2015) Characterization of inulin hydrolyzing enzyme(s) in oleaginous yeast Trichosporon cutaneum in consolidated bioprocessing of microbial lipid fermentation. Appl Biochem Biotechnol 177:1083–1098

    Article  CAS  Google Scholar 

  • Wendland RT, Fulmer EI, Underkofler LA (1941) Butyl-acetonic fermentation of Jerusalem artichokes. Ind Eng Chem 33(8):1078–1081

    Article  CAS  Google Scholar 

  • Yang F, Liu Z, Dong W, Zhu L, Chen X, Li X (2014) Ethanol production using a newly isolated Saccharomyces cerevisiae strain directly assimilating intact inulin with a high degree of polymerization. Biotechnol Appl Biochem 61(4):418–425. doi:10.1002/bab.1181

    Article  CAS  Google Scholar 

  • Yang F, Liu ZC, Wang X, Li LL, Yang L, Tang WZ, Yu ZM, Li X (2015) Invertase Suc2-mediated inulin catabolism is regulated at the transcript level in Saccharomyces cerevisiae. Microb Cell Fact 14:59–68

    Article  Google Scholar 

  • Yuan WJ, Chang BL, Ren JG, Liu JP, Bai FW, Li YY (2011) Consolidated bioprocessing strategy for ethanol production from Jerusalem artichoke tubers by Kluyveromyces marxianus under high gravity conditions. J Appl Microbiol 112:38–44

    Article  Google Scholar 

  • Zhang T, Chi Z, Chi ZM, Parrou J-L, Gong F (2010) Expression of the inulinase gene from the marine-derived Pichia guilliermondii in Saccharomyces sp. W0 and ethanol production from inulin. Microb Biotechnol 3(5):576–582

    Article  CAS  Google Scholar 

  • Zhao CH, Cui W, Liu XY, Chi ZM, Madzak C (2010) Expression of inulinase gene in the oleaginous yeast Yarrowia lipolytica and single cell oil production from inulin-containing materials. Metab Eng 12(6):510–517

    Article  CAS  Google Scholar 

  • Zhao CH, Chi Z, Zhang F, Guo FJ, Li M, Song WB, Chi ZM (2011) Direct conversion of inulin and extract of tubers of Jerusalem artichoke into single cell oil by co-cultures of Rhodotorula mucilaginosa TJY15a and immobilized inulinase-producing yeast cells. Bioresour Technol 10(102):6128–6133

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen R. Hughes.

Additional information

Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the United States Department of Agriculture. USDA is an equal opportunity provider and employer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hughes, S.R., Qureshi, N., López-Núñez, J.C. et al. Utilization of inulin-containing waste in industrial fermentations to produce biofuels and bio-based chemicals. World J Microbiol Biotechnol 33, 78 (2017). https://doi.org/10.1007/s11274-017-2241-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-017-2241-6

Keywords

Navigation