Skip to main content
Log in

Group-Wise Point-Set Registration Using a Novel CDF-Based Havrda-Charvát Divergence

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

This paper presents a novel and robust technique for group-wise registration of point sets with unknown correspondence. We begin by defining a Havrda-Charvát (HC) entropy valid for cumulative distribution functions (CDFs) which we dub the HC Cumulative Residual Entropy (HC-CRE). Based on this definition, we propose a new measure called the CDF-HC divergence which is used to quantify the dis-similarity between CDFs estimated from each point-set in the given population of point sets. This CDF-HC divergence generalizes the CDF Jensen-Shannon (CDF-JS) divergence introduced earlier in the literature, but is much simpler in implementation and computationally more efficient.

A closed-form formula for the analytic gradient of the cost function with respect to the non-rigid registration parameters has been derived, which is conducive for efficient quasi-Newton optimization. Our CDF-HC algorithm is especially useful for unbiased point-set atlas construction and can do so without the need to establish correspondences. Mathematical analysis and experimental results indicate that this CDF-HC registration algorithm outperforms the previous group-wise point-set registration algorithms in terms of efficiency, accuracy and robustness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baird, H. S. (1985). Model-based image matching using location. Cambridge: MIT Press.

    MATH  Google Scholar 

  • Belongie, S., Malik, J., & Puzicha, J. (2002). Shape matching and object recognition using shape contexts. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(4), 509–522.

    Article  Google Scholar 

  • Blake, A., & Isard, M. (1998). Active contours: the application of techniques from graphics, vision, control theory and statistics to visual tracking of shapes in motion. New York: Springer.

    Google Scholar 

  • Bookstein, F. L. (1989). Principal warps: thin-plate splines and the decomposition of deformations. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(6), 567–585.

    Article  MATH  Google Scholar 

  • Chui, H., & Rangarajan, A. (2003). A new point matching algorithm for non-rigid registration. Computer Vision and Image Understanding, 89(2–3), 114–141.

    Article  MATH  Google Scholar 

  • Chui, H., Rangarajan, A., Zhang, J., & Leonard, C. M. (2004). Unsupervised learning of an atlas from unlabeled point sets. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(2), 160–172.

    Article  Google Scholar 

  • Cootes, T., & Taylor, C. (1999). A mixture model for representing shape variation. Image and Vision Computing, 17(8), 567–573.

    Article  Google Scholar 

  • Duta, N., Jain, A. K., & Dubuisson-Jolly, M.-P. (2001). Automatic construction of 2D shape models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(5), 433–446.

    Article  Google Scholar 

  • Feller, W. (1948). On the Kolmogorov-Smirnov limit theorems for empirical distributions. The Annals of Mathematical Statistics, 19(2), 177–189.

    Article  MATH  MathSciNet  Google Scholar 

  • Glaunes, J., Trouvé, A., & Younes, L. (2004). Diffeomorpic matching of distributions: a new approach for unlabeled point-sets and sub-manifolds matching. In Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR) (Vol. 2, pp. 712–718).

  • Gosset, E. (1987). A three-dimensional extended Kolmogorov-Smirnov test as a useful tool in astronomy. Astronomy and Astrophysics, 188(1), 258–264.

    MathSciNet  Google Scholar 

  • Guo, H., Rangarajan, A., & Joshi, S. (2005). 3D diffeomorphic shape registration using hippocampal datasets. In LNCS : Vol. 3750. Proceedings of the international conference on medical image computing and computer assisted intervention (MICCAI) (pp. 984–991). Berlin: Springer.

    Chapter  Google Scholar 

  • Havrda, M. E., & Charvát, F. (1967). Quantification method of classification processes: concept of structural α-entropy. Kybernetika, 3, 30–35.

    MATH  MathSciNet  Google Scholar 

  • Jian, B., & Vemuri, B. (2005). A robust algorithm for point set registration using mixture of Gaussians. In Proceedings of the 10th IEEE international conference on computer vision (ICCV) (Vol. 2, pp. 1246–1251).

  • Klassen, E., Srivastava, A., Mio, M., & Joshi, S. H. (2004). Analysis of planar shapes using geodesic paths on shape spaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(3), 372–383.

    Article  Google Scholar 

  • Lorenzen, P., Prastawa, M., Davis, B., Gerig, G., Bullitt, E., & Joshi, S. (2006). Multi-model image set registration and atlas formation. Medical Image Analysis, 10(3), 440–451.

    Article  Google Scholar 

  • McLachlan, G. J., & Basford, K. E. (1988). Mixture models: inference and applications to clustering. New York: Marcel Dekker.

    MATH  Google Scholar 

  • Nocedal, J., & Wright, S. J. (1999). Springer series on operations research. Numerical optimization (2nd ed.). New York: Springer.

    MATH  Google Scholar 

  • Peacock, J. A. (1983). Two-dimensional goodness-of-fit testing in astronomy. Royal Astronomy Society Monthly Notices, 202, 615–627.

    Google Scholar 

  • Rohlfing, T., Brandt, R., Maurer, C. R. Jr., & Menzel, R. (2001). Bee brains, B-splines and computational democracy: generating an average shape atlas. In Proceedings of the IEEE workshop on mathematical methods in biomedical image analysis (MMBIA) (pp. 187–194).

  • Rohr, K. (2001). Landmark-based image analysis: using geometric and intensity models (1st ed.). New York: Springer.

    MATH  Google Scholar 

  • Sabuncu, M. R., Shenton, M. E., & Golland, P. (2007). Joint registration and clustering of images. In Proceedings of the MICCAI workshop on statistical registration workshop: pair-wise and group-wise alignment and atlas formation (Vol. 10(WS), pp. 47–54).

  • Sebastian, T. B., Crisco, J. J., Klein, P. N., & Kimia, B. B. (2000). Constructing 2D curve atlases. In Proceedings of the IEEE workshop on mathematical methods in biomedical imaging analysis (MMBIA) (pp. 70–77).

  • Tsin, Y., & Kanade, T. (2004). A correlation-based approach to robust point set registration. In LNCS : Vol. 3024. Proceedings of the European conference on computer vision (ECCV) (pp. 558–569). Berlin: Springer.

    Google Scholar 

  • Twining, C. J., Cootes, T. F., Marsland, S., Petrovic, V., Schetowitz, R., & Taylor, C. J. (2006). Information-theoretic unification of groupwise non-rigid registration and model building. In Proceedings of the medical image understanding and analysis (MIUA) (Vol. 2, pp. 226–230).

  • Wahba, G. (1990). Spline models for observational data. SIAM: Philadelphia.

    MATH  Google Scholar 

  • Wang, Y., Woods, K., & McClain, M. (2002). Information-theoretic matching of two point sets. IEEE Transactions on Image Processing, 11(8), 868–872.

    Article  Google Scholar 

  • Wang, F., Vemuri, B. C., Rao, M., & Chen, Y. (2003). A new and robust information theoretic measure and its application to image alignment. In LNCS : Vol. 2732. Proceedings on information processing in medical imaging (IPMI) (pp. 388–400). Berlin: Springer.

    Google Scholar 

  • Wang, F., Vemuri, B. C., & Rangarajan, A. (2006). Group-wise point pattern registration using a novel CDF-based Jensen-Shannon divergence. In Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR) (pp. 1283–1288).

  • Wang, F., Vemuri, B. C., Rangarajan, A., Schmalfuss, I., & Eisenschek, S. (2008). Simultaneous nonrigid registration of multiple point sets and atlas construction. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(11), 2011–2022.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anand Rangarajan.

Additional information

This research was in part funded by the NIH grant RO1 NS046812 and NSF grant NSF 0307712.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, T., Vemuri, B.C., Rangarajan, A. et al. Group-Wise Point-Set Registration Using a Novel CDF-Based Havrda-Charvát Divergence. Int J Comput Vis 86, 111–124 (2010). https://doi.org/10.1007/s11263-009-0261-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-009-0261-x

Keywords

Navigation