Skip to main content
Log in

A robust non-rigid point set registration algorithm using both local and global constraints

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

The goal of non-rigid point set registration is to estimate the optimal correspondence between points, and then recover the non-rigid deformation between point sets in a specific way, typically by using a set of complex interpolation functions. Many non-rigid matching algorithms have been studied, but only a few algorithms fully exploit the local structure between point sets. To improve the accuracy of point set registration, this paper proposes a new non-rigid registration algorithm that uses both the global structure and the stable local structure of a non-rigid shape to constrain the registration. Specifically, we consider the point set registration problem as a probability assignment problem, with the probability determined by the Gaussian mixture model and the local structure of the point set. In particular, the Hausdorff distance can effectively measure the similarity of the local structure of the point set in the proposed algorithm. The transformation between the two-point sets is determined by the reproducing kernel Hilbert space based on the motion coherence theory once the correspondence is determined. A significant number of experiments show that the proposed technique has higher registration accuracy than several other state-of-the-art algorithms when dealing with non-rigid registration problems, especially when the point set contains outliers and severely missing points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. http://graphics.stanford.edu/data/3Dscanrep/#bunny.

References

  1. Ma, J., Zhao, J., Yuille, A.L.: Non-rigid point set registration by preserving global and local structures. IEEE Trans. Image Process. 25(1), 53–64 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  2. Hu, L., Xiao, J., Wang, Y.: An automatic 3D registration method for rock mass point clouds based on plane detection and polygon matching. Vis. Comput. 36, 669–691 (2020)

    Article  MathSciNet  Google Scholar 

  3. Krishnakumar, K., Gandhi, S.I.: Video stitching based on multiview spatiotemporal feature points and grid-based matching. Vis. Comput. 36, 1837–1846 (2020)

    Article  Google Scholar 

  4. Kan, P., Kaufmann, H.: DeepLight: light source estimation for augmented reality using deep learning. Vis. Comput. 35(6–8), 873–883 (2019)

    Article  Google Scholar 

  5. Choi, J., et al.: Position-based augmented reality platform for aiding construction and inspection of offshore plants. Vis. Comput. 36(10), 2039–2049 (2020)

    Article  Google Scholar 

  6. Iglesias, J.P., Olsson, C., Kahl, F.: Global optimality for point set registration using semidefinite programming. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8284–8292 (2020)

  7. Li, J., Hu, Q., Ai, M.: Point cloud registration based on one-point RANSAC and scale-annealing biweight estimation. IEEE Trans. Geosci. Remote Sens. 59(11), 9716–9729 (2021)

    Article  Google Scholar 

  8. Tangelder, J.W.H., Veltkamp, R.C.: A survey of content based 3D shape retrieval methods. Multimed. Tools Appl. 39(3), 441–471 (2008)

    Article  Google Scholar 

  9. Hirose, O.: A Bayesian formulation of coherent point drift. IEEE Trans. Pattern Anal. Mach. Intell. 43(7), 2269–2286 (2021)

    Article  Google Scholar 

  10. Maiseli, B., Gu, Y., Gao, H.: Recent developments and trends in point set registration methods. J. Vis. Commun. Image Represent. 46, 95–106 (2017)

    Article  Google Scholar 

  11. Liao, Q.F., Sun, D., Andreasson, H.: Point set registration for 3d range scans using fuzzy cluster-based metric and efficient global optimization. IEEE Trans. Pattern Anal. Mach. Intell. 43(9), 3229–3246 (2021)

    Article  Google Scholar 

  12. Hui, K.C., Li, Y.: A feature-based shape blending technique for industrial design. Comput. Aided Des. 30(10), 823–834 (1998)

    Article  Google Scholar 

  13. Lowe, D.G.: Robust model-based motion tracking through the integration of search and estimation. Int. J. Comput. Vision 8(2), 113–122 (1994)

    Article  Google Scholar 

  14. Besl, P.J., Mckay, H.D.: A method for registration of 3-d shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 239–256 (1992)

    Article  Google Scholar 

  15. Chetverikov, D., Stepanov, D., Krsek, P.: Robust euclidean alignment of 3d point sets: the trimmed iterative closest point algorithm. Image Vis. Comput. 23(3), 299–309 (2005)

    Article  Google Scholar 

  16. Fitzgibbon, A.W.: Robust registration of 2d and 3d point sets. Image Vis. Comput. 21(13–14), 1145–1153 (2001)

    Google Scholar 

  17. Myronenko, A., Song, X.: Point set registration: coherent point drift. IEEE Trans. Pattern Anal. Mach. Intell. 32(12), 2262–2275 (2010)

    Article  Google Scholar 

  18. Bing, J., Vemuri, B.C.: Robust point set registration using Gaussian mixture models. IEEE Trans Pattern Anal Mach Intell. 33(8), 1633–1645 (2011)

    Article  Google Scholar 

  19. Meng, F., Li, X., Pei, J.: A feature point matching based on spatial order constraints bilateral-neighbor vote. IEEE Trans. Image Process. 24(11), 4160–4171 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ma, Y., et al.: Efficient rotation estimation for 3D registration and global localization in structured point clouds. Image Vis. Comput. 67, 52–66 (2017)

    Article  Google Scholar 

  21. Zheng, Y., Doermann, D.: Robust point matching for nonrigid shapes by preserving local neighborhood structures. IEEE Trans. Pattern Anal. Mach. Intell. 28(4), 643–649 (2006)

    Article  Google Scholar 

  22. Zhang, M., Yang, C., Wei, L., et al.: Non-rigid point set registration via coherent spatial mapping and local structures preserving. In: 2016 15th International Symposium on Parallel and Distributed Computing (ISPDC), pp. 382–385 (2016)

  23. Ma, J., Zhou, H., Zhao, J., Gao, Y., Jiang, J., Tian, J.: Robust feature matching for remote sensing image registration via locally linear transforming. IEEE Trans. Geosci. Remote Sens. 53(12), 6469–6481 (2015)

    Article  Google Scholar 

  24. Ma, J., Zhao, J., Jiang, J., Zhou, H., Guo, X.: Locality preserving matching. Int. J. Comput. Vis. 127(5), 512–531 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ma, J., Jiang, J., Liu, C., Li, Y.: Feature guided Gaussian mixture model with semi-supervised EM and local geometric constraint for retinal image registration. Inf. Sci. 417, 128–142 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ma, J., Jiang, X., Jiang, J., Gao, Y.: Feature-guided Gaussian mixture model for image matching. Pattern Recognit. 92, 231–245 (2019)

    Article  Google Scholar 

  27. Fischer, A., Frinken, V., et al.: Approximation of graph edit distance based on Hausdorff matching. Pattern Recognit. 48(2), 331–343 (2015)

    Article  MATH  Google Scholar 

  28. Jain, A., Kanhangad, V.: Exploring orientation and accelerometer sensor data for personal authentication in smartphones using touchscreen gestures. Pattern Recogn. Lett. 68, 351–360 (2015)

    Article  Google Scholar 

  29. Sim, D.G., Kwon, O.K., Park, R.H.: Object matching algorithms using robust Hausdorff distance measures. IEEE Trans. Image Process. 8(3), 425–429 (1999)

    Article  Google Scholar 

  30. Wang, Y., Chua, C.S.: Robust face recognition from 2d and 3d images using structural hausdorff distance. Image Vis. Comput. 24(2), 176–185 (2001)

    Article  Google Scholar 

  31. Ma, J., Jiang, X., Fan, A., Jiang, J., Yan, J.: Image matching from handcrafted to deep features: a survey. Int. J. Comput. Vis. 129(1), 23–79 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  32. Rusinkiewicz, S., Levoy, M.: Efficient variants of the ICP algorithm. In: Proceedings Third International Conference on 3-D Digital Imaging and Modeling, pp. 145–152 (2001)

  33. Yang, J., Li, H., Campbell, D., Jia, Y.: Go-icp: a globally optimal solution to 3d icp point-set registration. IEEE Trans. Pattern Anal. Mach. Intell. 38(11), 2241–2254 (2016)

    Article  Google Scholar 

  34. Khoo, Y., Kapoor, A.: Non-iterative rigid 2D/3D point-set registration using semidefinite programming. IEEE Trans. Image Process. 25(7), 2956–2970 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  35. Vongkulbhisal, J., et al.: Inverse composition discriminative optimization for point cloud registration. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2993–3001 (2018).

  36. Chui, H., Rangarajan, A.: A new point matching algorithm for non-rigid registration. Comput. Vis. Image Underst. 89(2–3), 114–141 (2003)

    Article  MATH  Google Scholar 

  37. Chui, H., Rangarajan, A.: A feature registration framework using mixture models. In: Proceedings IEEE Workshop on Mathematical Methods in Biomedical Image Analysis, pp. 190–197 (2000).

  38. Tsin, Y., Kanade, T.: A correlation-based approach to robust point set registration. In: European Conference on Computer Vision, pp. 558–569 (2004).

  39. Ma, J., Qiu, W., Zhao, J., Ma, Y., Yuille, A.L., Tu, Z.: Robust L2E estimation of transformation for non-rigid registration. IEEE Trans. Signal Process. 63(5), 1115–1129 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  40. Chen, J., Ma, J., Yang, C., Ma, L., Zheng, S.: Non-rigid point set registration via coherent spatial mapping. Signal Process. 106, 62–72 (2015)

    Article  Google Scholar 

  41. Wang, G., Chen, Y.: SCM: spatially coherent matching with Gaussian field learning for nonrigid point set registration. IEEE Trans. Neural Netw. Learn. Syst. 32(1), 203–213 (2021)

    Article  MathSciNet  Google Scholar 

  42. Ma, J., Jiang, X., Jiang, J., Zhao, J., Guo, X.: LMR: Learning a two-class classifier for mismatch removal. IEEE Trans. Image Process. 28(8), 4045–4059 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  43. Deng, H., Birdal, T., Ilic, S.: PPFNet: global context aware local features for robust 3D point matching. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 195–205 (2018).

  44. Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. IEEE Trans. Pattern Anal. Mach. Intell. 24(4), 509–522 (2002)

    Article  Google Scholar 

  45. Rusu, R.B., Blodow, N., Beetz, M.: Fast point feature histograms (FPFH) for 3D registration. In: 2009 IEEE International Conference on Robotics and Automation, pp. 3212–3217 (2009).

  46. Rote, G.: Computing the minimum hausdorff distance between two point sets on a line under translation. Inf. Process. Lett. 38(3), 123–127 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  47. Li, B., Shen, Y., Bo, L.: A new algorithm for computing the minimum hausdorff. Inf. Process. Lett. 106(2), 52–58 (2008)

    Article  MATH  Google Scholar 

  48. Yuille, A.L., Grzywacz, N.M.: A mathematical analysis of the motion coherence theory. Int. J. Comput. Vis. 3(2), 155–175 (1989)

    Article  Google Scholar 

  49. Yang, G., Li, R., Liu, Y., Wang, J.: A robust nonrigid point set registration framework based on global and intrinsic topological constraints. Vis. Comput. 5, 1–21 (2021)

    Google Scholar 

  50. Ge, S., Fan, G.: Topology-aware non-rigid point set registration via global–local topology preservation. Mach. Vis. Appl. 30(4), 717–735 (2019)

    Article  Google Scholar 

  51. Vedaldi, A., Fulkerson, B.: VLFeat: an open and portable library of computer vision algorithms. In: Proceedings of the 18th ACM International Conference on Multimedia, pp. 1469–1472 (2010).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing-Yan Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, QY., Feng, DZ. & Hu, HS. A robust non-rigid point set registration algorithm using both local and global constraints. Vis Comput 39, 1217–1234 (2023). https://doi.org/10.1007/s00371-022-02400-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-022-02400-w

Keywords

Navigation