Skip to main content

Advertisement

Log in

The effect of intraurethral heparin on inflammation and spongiofibrosis in a rat model of experimentally induced urethral trauma

  • Urology - Original Paper
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Aim

To determine the effect of heparin administered during the early post urethral trauma period on inflammation and spongiofibrosis in rats.

Materials and methods

The study included 24 male rats that were randomized into 3 groups of 8 each. The urethra was traumatized using a 24-G needle sheath in all rats. Group 1 (control group) received intraurethral saline 0.9% injected b.i.d. for 27 days, group 2 received intraurethral Na-heparin (liquemine-Roche) 1500 IU kg−1 injected b.i.d. for 27 days, and group 3 received intraurethral Na-heparin 1500 IU kg−1 injected b.i.d and saline 0.9% s.i.d. for 27 days. On day 28 the rats’ penises were degloved and penectomy was performed. Inflammation, spongiofibrosis, and congestion in the urethra were investigated in each group.

Results

A statistically significant difference was found between the three groups (control, heparin, and heparin + saline) in the histopathological status of spongiofibrosis, inflammation, and congestion, respectively (P = 0.0001, P = 0.002, P = 0.0001). Severe spongiofibrosis was observed in six (75%) of the rats in group 1 (control group), whereas severe spongiofibrosis was not observed in group 2 (heparin) or group 3 (heparin + saline).

Conclusion

We observed that intraurethral Na-heparin 1500 IU kg−1 injectioned during the early posturethral trauma period in rats significantly decreased inflammation, spongiofibrosis, and congestion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Rassweiler J, Teber D, Kuntz R, Hofmann R (2006) Complications of transurethral resection of the prostate (TURP)–incidence, management, and prevention. Eur Urol 50(5):969–979

    Article  PubMed  Google Scholar 

  2. Huang S, Fu D, Wan Z, Li M, Li H, Chong T (2021) Effects of a gamma-secretase inhibitor of notch signalling on transforming growth factor β1-induced urethral fibrosis. J Cell Mol Med 25(18):8796–8808. https://doi.org/10.1111/jcmm.16837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Beurskens DMH, Huckriede JP, Schrijver R, Hemker HC, Reutelingsperger CP, Nicolaes GAF (2020) The anticoagulant and nonanticoagulant properties of heparin review article. Thromb Haemost 120(10):1371–1383. https://doi.org/10.1055/s-0040-1715460

    Article  PubMed  Google Scholar 

  4. Tyrrell DJ, Horne AP, Holme KR, Preuss JM, Page CP (1999) Heparin in inflammation: potential therapeutic applications beyond anticoagulation. Adv Pharmacol 46:151–208. https://doi.org/10.1016/s1054-3589(08)60471-8. (PMID: 10332503)

    Article  CAS  PubMed  Google Scholar 

  5. Lever R, Page CP, Mulloy B (2012) Non-anticoagulant effects of heparin: an overview. Handb Exp Pharmacol 207:281–305. https://doi.org/10.1007/978-3-642-23056-1_12

    Article  CAS  Google Scholar 

  6. Veraldi N, Hughes AJ, Rudd TR, Thomas HB, Hadfield L, Yates EA et al (2015) Heparin derivatives for the targeting of multiple activities in the inflammatory response. Carbohydr Polym 117:400–407

    Article  CAS  PubMed  Google Scholar 

  7. Cassinelli G, Naggi A (2016) Old and new applications of non-anticoagulant heparin. Int J Cardiol 212(Supplement 1):S14–S21

    Article  PubMed  Google Scholar 

  8. Chirico G, Quartarone G, Mallefet P (2014) Nasal congestion in infants and children: a literature review on efficacy and safety of non-pharmacological treatments. Minerva Pediatr 66(6):549–557 (PMID: 25336097)

    CAS  PubMed  Google Scholar 

  9. Coco L et al (2003) Heparin derivatives as angiogenesis inhibitors. Curr Pharm Des 9(7):553–566

    Article  PubMed  Google Scholar 

  10. Bobek V, Kovarík J (2004) Antitumor and antimetastatic effect of warfarin and heparins. Biomed Pharmacother 58(4):213–219

    Article  CAS  PubMed  Google Scholar 

  11. Rosenbloom J, Mendoza FA, Jimenez SA (2013) Strategies for anti-fibrotic therapies. Biochim Biophys Acta 1832:1088–1103

    Article  CAS  PubMed  Google Scholar 

  12. Kitamura T et al (2007) Low molecular weight heparin prevents hepatic fibrogenesis caused by carbon tetrachloride in the rat. J Hepatol 46(2):286–294

    Article  PubMed  Google Scholar 

  13. Taboada FS, Martinusso CA et al (2006) Effects of low molecular weight heparin in obstructed kidneys: decrease of collagen, fibronectin and TGF-beta, and increase of chondroitin/dermatan sulfate proteoglycans and macrophage infiltration. Nephrol Dial Transplant 21(5):1212–1222

    Article  PubMed  Google Scholar 

  14. Saito T, Tabata Y (2012) Preparation of gelatine hydrogels incorporating low-molecular-weight heparin for anti-fibrotic therapy. Acta Biomater 8:646–652

    Article  CAS  PubMed  Google Scholar 

  15. Saito T, Kotani T, Suzuka T, Matsuda S, Takeuchi T, Sato T (2022) Adipose-derived stem/stromal cells with heparin-enhanced anti-inflammatory and antifibrotic effects mitigate induced pulmonary fibrosis in mice. Biochem Biophys Res Commun 12(629):135–141. https://doi.org/10.1016/j.bbrc.2022.08.096. (Epub 2022 Sep 6. PMID: 36116376)

    Article  CAS  Google Scholar 

  16. Yang T, Mustafa F, Bai S, Ahsan F (2004) Pulmonary delivery of low molecular weight heparins. Pharm Res 21:2009–2016

    Article  CAS  PubMed  Google Scholar 

  17. Bai S, Ahsan F (2010) Inhalable liposomes of low molecular weight heparin for the treatment of venous thromboembolism. J Pharm Sci 99:4554–4564

    Article  CAS  PubMed  Google Scholar 

  18. Tuinman PR, Dixon B, Levi M, Juffermans NP, Schultz MJ (2012) Nebulized anticoagulants for acute lung injury—a systematic review of preclinical and clinical investigations. Crit Care 16:R70

    Article  PubMed  PubMed Central  Google Scholar 

  19. Suter PM (2008) Nebulised heparin: a new approach to the treatment of acute lung injury? Crit Care 12:170

    Article  PubMed  PubMed Central  Google Scholar 

  20. Serisier DJ, Shute JK, Hockey PM, Higgins B, Conway J, Carrol MP (2006) Inhaled heparin in cystic fibrosis. Eur Repir J 27:354–358

    Article  CAS  Google Scholar 

  21. Ledson M, Gallagher M, Hart CA, Walshaw M (2001) Nebulized heparin in Burkholderia cepacia colonized adult cystic fibrosis patients. Eur Respir J 17:36–38

    Article  CAS  PubMed  Google Scholar 

  22. Mohamed R, Crislip GR, McLarnon S, Wei Q, O’Connor PM, Sullivan JC (2022) Persistent vascular congestion in male spontaneously hypertensive rats contributes to delayed recovery of renal function following renal ischemia perfusion compared with females. Clin Sci (Lond) 136(11):825–840. https://doi.org/10.1042/CS20220002. (PMID: 35535709)

    Article  CAS  PubMed  Google Scholar 

  23. Shi J, Hao JH, Ren WH, Zhu JR (2003) Effects of heparin on liver fibrosis in patients with chronic hepatitis B. World J Gastroenterol 9(7):1611–1614. https://doi.org/10.3748/wjg.v9.i7.1611. (PMID: 12854176; PMCID: PMC4615517)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Doğantekin E, Akgül T, Eser EP, Kotanoğlu M, Bayburtluoğlu V, Hücümenoğlu S (2022) The effect of intraurethral hyaluronic acid on healing and fibrosis in rats with experimentally induced urethral trauma. Int Urol Nephrol 54:757–761. https://doi.org/10.1007/s11255-022-03128-1

    Article  CAS  PubMed  Google Scholar 

  25. Dalkılınç A, Yavuzsan AH, Yeşildal C, Şimşek A, Aydın AF, Bayar G, Demirel HC, Kireççi SL (2018) Retrospective analysis of urethral stenosis following transurethral prostate resection: preventing effect of the using low molecular weight heparin on development of urethral stenosis. J Reconstr Urol 8(3):85–90. https://doi.org/10.5336/urology.2018-64115

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Concept and study design: FH. Data collection: FH and AD. Analysis and writing: FH. Supervision and critical review: FH, HH, EB, HB and AD. Statistical analysis: HH.

Corresponding author

Correspondence to Fatih Hızlı.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hızlı, F., Demirci, A., Benzer, E. et al. The effect of intraurethral heparin on inflammation and spongiofibrosis in a rat model of experimentally induced urethral trauma. Int Urol Nephrol 55, 1421–1426 (2023). https://doi.org/10.1007/s11255-023-03613-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-023-03613-1

Keywords

Navigation