Skip to main content

Advertisement

Log in

When Small is Big: The Role of Impurities in Electrocatalysis

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Improvements in the fundamental understanding of electrocatalysis have started to revolutionize the development of electrochemical interfaces for the efficient conversion of chemical energy into electricity, as well as for the utilization of electrons to produce new chemicals that then can be re-used in energy conversion systems. Here, some facets of the role of trace level of impurities (from 10−7 to 10−6 M) in electrocatalysis of the oxygen reduction reaction, hydrogen oxidation and evolution reactions, and CO oxidation reactions are explored on well-characterized platinum single crystal surfaces and high surface area materials in alkaline and acidic environments. Of particular interest is the effect of anions (e.g., Cl, \( {\text{NO}}_{ 3}^{ - } \)) and cations (i.e., Cu2+) present in the supporting electrolytes as well as surface defects (i.e., ad-islands) that are present on metal surfaces. The examples presented are chosen to demonstrate that a small level of impurities may play a crucial role in governing the reactivity of electrochemical interfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Markovic NM (2013) Electrocatalysis: interfacing electrochemistry. Nat Mater 12:101–102

    Article  CAS  Google Scholar 

  2. Wieckovski A (2009) Fuell cell catalysis; a surface science approach. In: Koper MTM (ed) The wiley series on electrocatalysis and electrochemistry. Wiley, New York

    Google Scholar 

  3. Wieckowski A, Savinova E, Vayenas CG (2003) Catalysis and electrocatalysis at nanoparticle surfaces. Marcel Dekker Inc, New York

    Book  Google Scholar 

  4. Markovic NM, Ross PN (2000) New electrocatalysts for fuel cells. Cattech 4:110–126

    Article  CAS  Google Scholar 

  5. Greeley J, Markovic NM (2012) The road from animal electricity to green energy: combining experiment and theory in electrocatalysis. Energy Environ Sci 5:9246–9256

    Article  CAS  Google Scholar 

  6. Breiter MW, Lipkowski J, Ross PN (eds) (1998) Electrocatalysis. Wiley, New York 75

    Google Scholar 

  7. Conway BE, Jerkiewicz G (2000) Relation of energies and coverages of underpotential and overpotential deposited H at Pt and other metals to the ‘volcano curve’ for cathodic H2 evolution kinetics. Electrochim Acta 45:4075–4083

    Article  CAS  Google Scholar 

  8. Strmcnik D, Uchimura M, Wang C et al (2013) Improving the hydrogen oxidation reaction rate by promotion of hydroxyl adsorption. Nat Chem 5:300–306

    Article  Google Scholar 

  9. Strmcnik D, Kodama K, Van der Vliet D et al (2009) The role of non-covalent interactions in electrocatalytic fuel-cell reactions on platinum. Nat Chem 1:466–472

    Article  CAS  Google Scholar 

  10. Schmickler W, Santos E (2010) Interfacial electrochemistry. Springer, Berlin, p 163

    Book  Google Scholar 

  11. Tarasevich MT, Sadkowski A, Yeager E (1983) In: Bockris JOM, Conway BE, Yeager E, Khan SUM, White RE (eds) Comprehensive treates in electrocehmistry. Plenum Press, New York, p 301

    Chapter  Google Scholar 

  12. Chang SH, Danilovic N, Chang K-C et al (2014) Functional links between stability and reactivity of strontium ruthenate single crystals during oxygen evolution. Nat Commun 5:4191

    CAS  Google Scholar 

  13. Chang SH, Connell JG, Danilovic N et al (2014) Activity-stability relationship in the surface electrochemistry of the oxygen evolution reaction. Faraday Discuss 176:125–133

    Article  CAS  Google Scholar 

  14. Parsons R, VanderNoot T (1988) the oxidation of small orgnaic molecules: a survey of recent fuel cell related research. J Electroanal Chem 257:9–45

    Article  CAS  Google Scholar 

  15. Jarvi TD, Stuve E (1998) In: Lipkowski J, Ross PN (eds) Electrocatalysis. Wiley, New York, p 75

    Google Scholar 

  16. Adzic RR (1990) In: White RE, Bockris JOM, Conway BE (eds) Modern aspects of electrochemistry. Plenum Press, New York, p 163

    Google Scholar 

  17. Farias MJS, Camara GA, Tanaka AA, Iwasita T (2007) Acetaldehyde electrooxidation: the influence of concentration on the yields of parallel pathways. J Electroanal Chem 600:236–242

    Article  CAS  Google Scholar 

  18. Iwasita T (2002) Electrocatalysis of methanol oxidation. Electrochim Acta 47:3663–3674

    Article  CAS  Google Scholar 

  19. Adziv RR, Tripkovic A, Markovic NM (1983) Structural effects in electrocatalysis: oxidation of formic acid and oxygen reduction on single-crystal electrodes and the effects of foreign metal adatoms. J Electroanal Chem 150:79

    Article  Google Scholar 

  20. Iwasita T, Pastor E (1994) A dems and FTir spectroscopic investigation of adsorbed ethanol on polycrystalline platinum. Electrochim Acta 39:531–537

    Article  CAS  Google Scholar 

  21. Leung LH, Weaver MJ (1988) Real-time FTIR spectroscopy as a quantitative kinetic probe of competing electrooxidation pathways for small organic molecules. J Phys Chem 92:4019–4022

    Article  CAS  Google Scholar 

  22. Knözinger H, Kochloefl K (2000) Heterogeneous catalysis and solid catalysts. Ullmann’s encyclopedia of industrial chemistry. Wiley, New York, p 8

    Google Scholar 

  23. Subbaraman R, Tripkovic D, Strmcnik D et al (2011) Enhancing Tailoring Li+-Ni (OH) 2-Pt interfaces. Science 334:1256–1260

    Article  CAS  Google Scholar 

  24. Kodama K, Morimoto Y, Strmcnik DS, Markovic NM (2015) The role of non-covalent interactions on CO bulk oxidation on Pt single crystal electrodes in alkaline electrolytes. Electrochim Acta 152:38–43

    Article  CAS  Google Scholar 

  25. Strmcnik D, Escudero-Escribano M, Kodama K, Stamenkovic V, Markovic NM (2010) Enhanced electrocatalysis of the oxygen reduction reaction based on patterning of platinum surfaces with cyanide. Nat Chem 2:880–885

    Article  CAS  Google Scholar 

  26. Strmcnik D, van der Vliet DF, Chang K-C et al (2011) Effects of Li+, K+, and Ba2+ cations on the ORR at model and high surface area Pt and Au surfaces in alkaline solutions. J Phys Chem Lett 2:2733–2736

    Article  CAS  Google Scholar 

  27. Angelucci CA, Varela H, Tremiliosi-Filho G, Gomes JF (2013) The significance of non-covalent interactions on the electro-oxidation of alcohols on Pt and Au in alkaline media. Electrochem Commun 33:10–13

    Article  CAS  Google Scholar 

  28. Sitta E, Batista BC, Varela H (2011) The impact of the alkali cation on the mechanism of the electro-oxidation of ethylene glycol on Pt. Chem Commun 47:3775–3777

    Article  CAS  Google Scholar 

  29. Adzic RR (1984) In: Gerisger H, Tobias CW (eds) Advances in electrochemistry and electrocehmical engineering. Wiley, New York, p 159

    Google Scholar 

  30. Markovic NM, Gasteiger HA, Ross PNJ (1995) Copper Electrodeposition on Pt(111) in the presence of chloride and (Bi)sulfate: rotating ring-Pt(111) disk electrode studies. Langmuir 11:4098–4108

    Article  CAS  Google Scholar 

  31. Marković NM, Lucas CA, Gasteiger HA, Ross PN Jr (1997) The structure of adsorbed bromide concurrent with the underpotential deposition (UPD) of Cu on Pt(111). Surf Sci 372:239–254

    Article  Google Scholar 

  32. Markovic N, Ross PN (1993) Effect of anions on the underpotential deposition of copper on platinum(111) and platinum(100) surfaces. Langmuir 9:580–590

    Article  CAS  Google Scholar 

  33. Marković NM, Ross PN Jr (2002) Surface science studies of model fuel cell electrocatalysts. Surf Sci Rep 45:117–229

    Article  Google Scholar 

  34. Markovic N, Ross PN (1992) The effect of specific adsorption of ions and underpotential deposition of copper on the electro-oxidation of methanol on platinum single-crystal surfaces. J Electroanal Chem 330:499–520

    Article  CAS  Google Scholar 

  35. Kokkinidis G (1986) Underpotential deposition and electrocatalysis. J Electroanal Chem 201:217–236

    Article  CAS  Google Scholar 

  36. Stamenković V, Marković NM (2001) Oxygen reduction and hydrogen oxidation reactions on Pt(111) and Pt(100) in solutions containing copper ions. Langmuir 17:2388–2394

    Article  Google Scholar 

  37. Danilovic N, Subbaraman R, Chang KC et al (2014) Using surface segregation to design stable Ru-Ir oxides for the oxygen evolution reaction in acidic environments. Angew Chem Int Ed 53:14016–14021

    Article  CAS  Google Scholar 

  38. Danilovic N, Subbaraman R, Chang K-C et al (2014) Activity-stability trends for the oxygen evolution reaction on monometallic oxides in acidic environments. J Phys Chem Lett 5:2474–2478

    Article  CAS  Google Scholar 

  39. Subbaraman R, Tripkovic D, Chang K-C et al (2012) Trends in activity for the water electrolyser reactions on 3d M(Ni Co, Fe, Mn) hydr(oxy)oxide catalysts. Nat Mater 11:550–557

    Article  CAS  Google Scholar 

  40. Strmcnik DS, Tripkovic DV, van der Vliet D et al (2008) Unique activity of platinum adislands in the CO electrooxidation reaction. J Am Chem Soc 130:15332–15339

    Article  CAS  Google Scholar 

  41. Bard AJ, Faulkner LR (2000) Electrochemical methods: fundamentals and applications. Wiley, New York

    Google Scholar 

  42. Marković NM, Gasteiger HA, Lucas CA et al (1995) The effect of chloride on the underpotential deposition of copper on Pt(111): AES, LEED, RRDE, and X-ray scattering studies. Surf Sci 335:91–100

    Article  Google Scholar 

  43. Lopes PP, Ticianelli EA (2010) The CO tolerance pathways on the Pt–Ru electrocatalytic system. J Electroanal Chem 644:110–116

    Article  CAS  Google Scholar 

  44. Shibata M, Furuya N (1989) Catalysis by ad-atoms: part II. Enhancement of CO oxidation on Pt catalysts modified by Sn ad-atoms in the gaseous phase. J Electroanal Chem Interfacial Electrochem 269:217–221

    Article  CAS  Google Scholar 

  45. Watanabe M, Shibata M, Motoo S (1985) Electrocatalysis by ad-atoms: part XII. Enhancement of carbon monoxide oxidation on platinum electrodes by oxygen adsorbing ad-atoms. J Electroanal Chem Interfacial Electrochem 187:161–174

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences, under contract DE-AC0206CH11357.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nenad M. Markovic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Strmcnik, D., Li, D., Lopes, P.P. et al. When Small is Big: The Role of Impurities in Electrocatalysis. Top Catal 58, 1174–1180 (2015). https://doi.org/10.1007/s11244-015-0492-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-015-0492-8

Keywords

Navigation