Skip to main content

Advertisement

Log in

Phyto-molecular profiling and assessment of antioxidant activity within micropropagated plants of Dendrobium thyrsiflorum: a threatened, medicinal orchid

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

An Erratum to this article was published on 08 July 2015

Abstract

The escalating loss of biological diversity throughout the world has become a major concern for the conservation biologists. Like other threatened plant species, the natural populations of the orchids are also severely threatened. Dendrobium thyrsiflorum is one such representative of the family Orchidaceae whose natural populations are getting destroyed at an alarming rate and deserves special conservation attention. Both direct shoot organogenesis (DSO) and indirect shoot organogensesis (ISO) pathways were experimented and the highest regeneration frequency for DSO and ISO pathways were found to be 86.2 and 96 % respectively. The regenerated shoots were best rooted in half-strength MS medium supplemented with 1 mg/l indole butyric acid (IBA) and 0.5 mg/l phloroglucinol. The genetic stability of the acclimatized plants derived from ISO and DSO pathways was assessed using Inter Simple Sequence Repeats (ISSR) and Start Codon Targeted (SCoT) molecular markers. SCoT proved to be a superior marker over ISSR in detecting clonal variability. The phytochemical analysis of the micropropagated plants also revealed a comprehensively higher yield of various secondary metabolites with significantly higher antioxidant potentials in both ISO- and DSO-derived plants over the mother plant. However, the ISO-derived plants were more phytochemically enriched compared to the DSO-plants. The rapid multiplication rate, higher genetic stability and secondary metabolite production ensures the utility of this micropropagation method for D. thyrsiflorum in the ex situ conservation and commercial exploitation of other important orchid species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahmad N, Fazal H, Abbasi BH (2010) Efficient regeneration and antioxidant potential in regenerated tissues of Piper nigrum L. Plant Cell Tissue Organ Cult 102:129–134

    Article  CAS  Google Scholar 

  • Amoo SO, Aremu AO, Van Staden J (2012) In vitro plant regeneration, secondary metabolite production and antioxidant activity of micropropagated Aloe arborescens Mill. Plant Cell Tissue Organ Cult 111:345–358

    Article  CAS  Google Scholar 

  • Baskaran P, Jayabalan N (2005) An efficient micropropagation system for Eclipta, alba—A valuable medicinal herb. In Vitro Cell. Dev. Biol. Plant. 41:532–539

    Article  CAS  Google Scholar 

  • Baskaran P, Moyo M, Van Staden J (2014) In vitro plant regeneration, phenolic compound production and pharmacological activities of Coleonema pulchellum. S Afr J Bot 90:74–79

    Article  CAS  Google Scholar 

  • Benzie IFF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem 239:70–76

    Article  CAS  PubMed  Google Scholar 

  • Bhatia R, Singh KP, Jhang T, Sharma TR (2009) Assessment of clonal fidelity of micropropagated gerbera plants by ISSR markers. Sci Hortic 119:208–211

    Article  CAS  Google Scholar 

  • Bhattacharya E, Dandin SB, Ranade SA (2005) Single primer amplification reaction methods reveal exotic and indigenous mulberry varieties are similarly diverse. J Biosci 30:669–677

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharyya P, Kumaria S, Kumar S, Tandon P (2013) Start Codon Targeted (SCoT) marker reveals genetic diversity of Dendrobium nobile Lindl., an endangered medicinal orchid species. Gene 529:21–26

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharyya P, Kumaria S, Diengdoh R, Tandon P (2014) Genetic stability and phytochemical analysis of the in vitro regenerated plants of Dendrobium nobile Lindl., an endangered medicinal orchid. Meta Gene 2:489–504

    Article  PubMed Central  PubMed  Google Scholar 

  • Brand-Williams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci Technol 28:25–30

    Article  CAS  Google Scholar 

  • Brewer MS (2011) Natural antioxidants: sources, compounds, mechanisms of action, and potential applications. Compr Rev Food Sci Food Saf 10:221–247

    Article  CAS  Google Scholar 

  • Bulpitt CJ (2005) The uses and misuses of orchids in medicine. QJM 98:625–631

    Article  CAS  PubMed  Google Scholar 

  • Chang C-C, Yang M-H, Wen H-M, Chern J-C (2002) Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J Food Drug Anal 10:178–182

    CAS  Google Scholar 

  • Chavan JJ, Jagtap UB, Gaikwad NB (2012) Total phenolics, flavonoids and antioxidant activity of Saptarangi (Salacia chinensis L.) fruit pulp. J Plant Biochem Biotechnol 4:409–413

    Google Scholar 

  • Chavan JJ, Gaikwad NB, Kshirsagar PR, Dixit GB (2013) Total phenolics, flavonoids and antioxidant properties of three Ceropegia species from Western Ghats of India. S Afr J Bot 88:273–277

    Article  CAS  Google Scholar 

  • Chavan JJ, Gaikwad NB, Umdale SD (2014) Efficiency of direct and indirect shoot organogenesis, molecular profiling, secondary metabolite production and antioxidant activity of micropropagated Ceropegia santapaui. Plant Growth Regul 72:1–15

    Article  CAS  Google Scholar 

  • Cheruvathur MK, Abraham J, Mani B, Thomas TD (2010) Adventitious shoot induction from cultured internodal explants of Malaxis acuminata D. Don, a valuable terrestrial medicinal orchid. Plant Cell Tissue Organ Cult 101:163–170

    Article  Google Scholar 

  • Chowdhery HJ (1998) Orchid flora of Arunachal Pradesh. Dehra Dun Bishen Singh Mahendra Pal Singh 824p.-illus., col. illus. ISBN: 8121101247 En Icones, Keys. Geog 6

  • Chung H-H, Chen J-T, Chang W-C (2005) Cytokinins induce direct somatic embryogenesis of Dendrobium chiengmai pink and subsequent plant regeneration. In Vitro Cell Dev Biol Plant 41:765–769

  • Collard BCY, Mackill DJ (2009) Start codon targeted (SCoT) polymorphism: a simple, novel DNA marker technique for generating gene-targeted markers in plants. Plant Mol Biol Rep 27:86–93

    Article  CAS  Google Scholar 

  • Conner EM, Grisham MB (1996) Inflammation, free radicals, and antioxidants. Nutrition 12:274–277

    Article  CAS  PubMed  Google Scholar 

  • Da Silva JAT (2014) The phloroglucinol conundrum: increase in root growth of hybrid Cymbidium (Orchidaceae) with no toxic effect on protocorm-like body formation. Plant Tissue Cult Biotechnol 23:275–282

  • Da Silva JAT, Cardoso JC, Dobránszki J, Zeng S (2015) Dendrobium micropropagation: a review. Plant Cell Rep 34:671–704

  • De Klerk G-J, van der Krieken W, de Jong JC (1999) Review the formation of adventitious roots: new concepts, new possibilities. In Vitro Cell Dev Biol Plant 35:189–199

    Article  Google Scholar 

  • Devi SP, Kumaria S, Rao SR, Tandon P (2014) Single primer amplification reaction (SPAR) methods reveal subsequent increase in genetic variations in micropropagated plants of Nepenthes khasiana Hook. f. maintained for three consecutive regenerations. Gene 538:23–29

    Article  CAS  PubMed  Google Scholar 

  • Dohling S, Kumaria S, Tandon P (2012) Multiple shoot induction from axillary bud cultures of the medicinal orchid, Dendrobium longicornu. AoB Plants. doi:10.1093/aobpla/pls032

    PubMed Central  PubMed  Google Scholar 

  • Duncan DB (1955) Multiple range and multiple F tests. Biometrics 11:1–42

  • Dutra D, Johnson TR, Kauth PJ (2008) Asymbiotic seed germination, in vitro seedling development, and greenhouse acclimatization of the threatened terrestrial orchid Bletia purpurea. Plant Cell Tissue Organ Cult 94:11–21

    Article  Google Scholar 

  • Ferreira WDM, Kerbauy GB, Costa APP (2006) Micropropagation and genetic stability of a Dendrobium hybrid (Orchidaceae). In Vitro Cell Dev Biol Plant 42:568–571

    Article  Google Scholar 

  • Galdiano RF Jr, Lemos EGM, Faria RT, Vendrame WA (2012) Cryopreservation of Dendrobium hybrid seeds and protocorms as affected by phloroglucinol and Supercool X1000. Sci Hortic 148:154–160

    Article  CAS  Google Scholar 

  • Ganesan M, Jayabalan N (2006) Influence of cytokinins, auxins and polyamines on in vitro mass multiplication of cotton (Gossypium hirsutum L. cv. SVPR2). Indian J Exp Biol 44:506

    CAS  PubMed  Google Scholar 

  • Giridhar P, Gururaj HB, Ravishankar GA (2005) In vitro shoot multiplication through shoot tip cultures of Decalepis hamiltonii Wight & Arn., a threatened plant endemic to Southern India. In Vitro Cell Dev Biol Plant 41:77–80

    Article  Google Scholar 

  • Goto S, Thakur RC, Ishii K (1998) Determination of genetic stability in long-term micropropagated shoots of Pinus thunbergii Parl. using RAPD markers. Plant Cell Rep 18:193–197

    Article  CAS  Google Scholar 

  • Gow W-P, Chen J-T, Chang W-C (2008) Influence of growth regulators on direct embryo formation from leaf explants of Phalaenopsis orchids. Acta Physiol Plant 30:507–512

    Article  CAS  Google Scholar 

  • Halliwell B (2008) Are polyphenols antioxidants or pro-oxidants? What do we learn from cell culture and in vivo studies? Arch Biochem Biophys 476:107–112

    Article  CAS  PubMed  Google Scholar 

  • Harris GG, Brannan RG (2009) A preliminary evaluation of antioxidant compounds, reducing potential, and radical scavenging of pawpaw (Asimina tribloba) fruit pulp from different stages of ripeness. LWT-Food Sci Technol 42:275–279

    Article  CAS  Google Scholar 

  • Heath DD, Lwama GK, Devlin RH (1993) PCR primed with VNTR core sequences yields species specific patterns and hypervariable probes. Nucleic Acids Res 21:5782–5785

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Huetteman CA, Preece JE (1993) Thidiazuron: a potent cytokinin for woody plant tissue culture. Plant Cell Tissue Organ Cult 33:105–119

    Article  CAS  Google Scholar 

  • Jagtap UB, Waghmare SR, Lokhande VH (2011) Preparation and evaluation of antioxidant capacity of Jackfruit (Artocarpus heterophyllus Lam.) wine and its protective role against radiation induced DNA damage. Ind Crops Prod 34:1595–1601

    Article  CAS  Google Scholar 

  • Jain SM (2001) Tissue culture-derived variation in crop improvement. Euphytica 118:153–166

    Article  CAS  Google Scholar 

  • Kumar S, Kumaria S, Tandon P (2013) SPAR methods coupled with seed-oil content revealed intra-specific natural variation in Jatropha curcas L. from Northeast India. Biomass Bioenergy 54:100–106

    Article  CAS  Google Scholar 

  • Lü L, Liu S-W, Jiang S-B, Wu S-G (2004) Tannin inhibits HIV-1 entry by targeting gp41. Acta Pharmacol Sin 25:213–218

    PubMed  Google Scholar 

  • Martins M, Sarmento D, Oliveira MM (2004) Genetic stability of micropropagated almond plantlets, as assessed by RAPD and ISSR markers. Plant Cell Rep 23:492–496

    Article  CAS  PubMed  Google Scholar 

  • Mulabagal V, Tsay H-S (2004) Plant cell cultures—an alternative and efficient source for the production of biologically important secondary metabolites. Int J Appl Sci Eng 2:29–48

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4326

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nadeem M, Kumar A, Nandi SK, Palni LMS (1998) Tissue culture of medicinal plants with particular reference to Kumaun Himalaya. In: Proceedings of the work. Himalayan medical plants-potential prospect. Kosi-Katarmal, Almora, pp 5–7

  • Nayak NR, Sahoo S, Patnaik S, Rath SP (2002) Establishment of thin cross section (TCS) culture method for rapid micropropagation of Cymbidium aloifolium (L.) Sw. and Dendrobium nobile Lindl. (Orchidaceae). Sci Hortic 94:107–116

    Article  CAS  Google Scholar 

  • Nookaraju A, Agrawal DC (2012) Genetic homogeneity of in vitro raised plants of grapevine cv. Crimson Seedless revealed by ISSR and microsatellite markers. S Afr J Bot 78:302–306

    Article  CAS  Google Scholar 

  • Palombi M, Damiano C (2002) Comparison between RAPD and SSR molecular markers in detecting genetic variation in kiwifruit (Actinidia deliciosa A. Chev). Plant Cell Rep 20:1061–1066

    Article  CAS  Google Scholar 

  • Paul S, Kumaria S, Tandon P (2012) An effective nutrient medium for asymbiotic seed germination and large-scale in vitro regeneration of Dendrobium hookerianum, a threatened orchid of northeast India. AoB Plants 2012:plr032. doi:10.1093/aobpla/plr032

  • Paul S, Kumaria S, Tandon P (2014) Comparative study on the changes of proteins and oxidative enzymes occurring in protocorms and protocorm-like bodies systems of development in the orchid Dendrobium hookerianum. Acta Physiol Plant 36:2113–2123

    Article  CAS  Google Scholar 

  • Pavlicek A, Hrda S, Flegr J (1999) Free-Tree–freeware program for construction of phylogenetic trees on the basis of distance data and bootstrap/jackknife analysis of the tree robustness. Application in the RAPD analysis of genus Frenkelia. Folia Biol (Praha) 97–99

  • Phan CT, Hegedus P (1986) Possible metabolic basis for the developmental anomaly observed in in vitro culture, called “vitreous plants”. Plant Cell Tissue Organ Cult 6:83–94

    Article  CAS  Google Scholar 

  • Procházková D, Boušová I, Wilhelmová N (2011) Antioxidant and prooxidant properties of flavonoids. Fitoterapia 82:513–523

    Article  PubMed  Google Scholar 

  • Rahman M, Rajora O (2001) Microsatellite DNA somaclonal variation in micropropagated trembling aspen (Populus tremuloides). Plant Cell Rep 20:531–536

    Article  CAS  Google Scholar 

  • Rai MK, Phulwaria M, Gupta AK (2012) Genetic homogeneity of guava plants derived from somatic embryogenesis using SSR and ISSR markers. Plant Cell Tissue Organ Cult 111:259–264

    Article  CAS  Google Scholar 

  • Ranade SA, Rana TS, Narzary D (2009) SPAR profiles and genetic diversity amongst pomegranate (Punica granatum L.) genotypes. Physiol Mol Biol plants 15:61–70

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rani V, Raina SN (2000) Genetic fidelity of organized meristem-derived micropropagated plants: a critical reappraisal. In Vitro Cell Dev Biol Plant 36:319–330

  • Rathore NS, Rai MK, Phulwaria M (2014) Genetic stability in micropropagated Cleome gynandra revealed by SCoT analysis. Acta Physiol Plant 36:555–559

    Article  CAS  Google Scholar 

  • Rohlf FJ, Taxonomy NN (1998) Multivariate analysis system, version 2.02. New York Exet. Software, Appl. Biostat. Inc, New York

  • Ross S, Grasso R (2010) In vitro propagation of “Guayabo del país”(Acca sellowiana (Berg.) Burret). Fruit Veg Cereal Sci Biotech 4:83–87

    Google Scholar 

  • Rout GR, Samantaray S, Das P (2000) In vitro manipulation and propagation of medicinal plants. Biotechnol Adv 18:91–120

    Article  CAS  PubMed  Google Scholar 

  • Shilpha J, Silambarasan T, Largia MJV, Ramesh M (2014) Improved in vitro propagation, solasodine accumulation and assessment of clonal fidelity in regenerants of Solanum trilobatum L. by flow cytometry and SPAR methods. Plant Cell Tissue Organ Cult 177:125–129

    Article  Google Scholar 

  • Shinde AN, Malpathak N, Fulzele DP (2010) Determination of isoflavone content and antioxidant activity in Psoralea corylifolia L. callus cultures. Food Chem 118:128–132

    Article  CAS  Google Scholar 

  • Singh DK (2001) Orchid diversity in India: an overview. In: Pathak P, Sehgal RN, Shekhar N, Sharma M, Sood A (eds) Orchids: science and commerce. BSMPS, Dehra Dun, pp 35–65

  • Singh AKR, Tiwari C (2007) Harnessing the economic potential of Orchids in Uttaranchal. ENVIS Bull Hima Ecol 14:1–3

    Google Scholar 

  • Singleton VL, Rossi JA (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 16:144–158

    CAS  Google Scholar 

  • Song N, Lu Y (2006) 1*, QIU Ming-hua2 (1Yunnan Pharmacological Laboratory of Natural Products, Kunming Medical College, Kunming 650031, China; 2Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China); Studies on Immunomodulation of Polysaccharidefrom. Nat Prod Res Dev 3:23–29

    Google Scholar 

  • Sreevidya N, Mehrotra S (2003) Spectrophotometric method for estimation of alkaloids precipitable with Dragendorff’s reagent in plant materials. J AOAC Int 86:1124–1127

    CAS  PubMed  Google Scholar 

  • Stewart J, Griffiths M (1995) Manual of orchids. Timber Press, New York

    Google Scholar 

  • Stewart SL, Kane ME (2006) Asymbiotic seed germination and in vitro seedling development of Habenaria macroceratitis (Orchidaceae), a rare Florida terrestrial orchid. Plant Cell Tissue Organ Cult 86:147–158

    Article  CAS  Google Scholar 

  • Surveswaran S, Cai Y-Z, Xing J (2010) Antioxidant properties and principal phenolic phytochemicals of Indian medicinal plants from Asclepiadoideae and Periplocoideae. Nat Prod Res 24:206–221

    Article  CAS  PubMed  Google Scholar 

  • Vendrame WA, Faria RT (2011) Phloroglucinol enhances recovery and survival of cryopreserved Dendrobium nobile protocorms. Sci Hortic 128:131–135. doi:10.1016/j.scienta.2010.12.018

    Article  CAS  Google Scholar 

  • Verpoorte R, Contin A, Memelink J (2002) Biotechnology for the production of plant secondary metabolites. Phytochem Rev 1:13–25

    Article  CAS  Google Scholar 

  • Williams JGK, Kubelik AR, Livak KJ (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18:6531–6535

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wrigley TC (1960) Ayapin, scopoletin and 6, 7-dimethoxycoumarin from Dendrobium thyrsiflorum (Reichb. f.)

  • Xiong F, Zhong R, Han Z (2011) Start codon targeted polymorphism for evaluation of functional genetic variation and relationships in cultivated peanut (Arachis hypogaea L.) genotypes. Mol Biol Rep 38:3487–3494

    Article  CAS  PubMed  Google Scholar 

  • Yan Z, Luoshan X, Zhengtao W, Chaoying Z (2009) Variation in coumarin accumulation by stem age in Dendrobium thyrsiflorum (Orchidaceae) at different developmental stages. Afr J Biotechnol 8:794–800

    Google Scholar 

  • Yesil-Celiktas O, Nartop P, Gurel A (2007) Determination of phenolic content and antioxidant activity of extracts obtained from Rosmarinus officinalis calli. J Plant Physiol 164:1536–1542

    Article  CAS  PubMed  Google Scholar 

  • Ying Hui Y, Bei Wei HOU, Hui Jun XU (2011) Identification of the geographic origin of Dendrobium thyrsiflorum on Chinese herbal medicine market using trinucleotide microsatellite markers. Biol Pharm Bull 34:1794–1800

    Article  Google Scholar 

  • Zhang GN, Zhang CF, Wang ZT, Xu LS (2004) Studies on chemical constituents of Dendrobium thyrsiflorum Rchb. f (I). Chin J Nat Med 2:78–82

    CAS  Google Scholar 

  • Zhang SY, Meng L, Gao WY et al (2005a) [Advances on biological activities of coumarins]. Zhongguo Zhong yao za zhi= Zhongguo zhongyao zazhi= China J Chin Mater Med 30:410–414

    Google Scholar 

  • Zhang Y-B, But PP-H, Wang Z-T, Shaw P-C (2005b) Current approaches for the authentication of medicinal Dendrobium species and its products. Plant Genet Resour Charact Util 3:144–148. doi:10.1079/PGR200578

    Article  CAS  Google Scholar 

  • Zietkiewicz E, Rafalski A, Labuda D (1994) Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics 20:176–183

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research work was supported by the Centre for Advanced Studies (CAS) in Botany, University Grants Commission (UGC), India and the research Grant to PB in the form of Meritorious Student Fellowship (No. 42-47/Acad/Meritorious/Botany/2009-699) is gratefully acknowledged. PB also acknowledges Prof. Nirmalendu Saha, Mr. Bodhisatwa Banerjee and Mr. Debaprasad Koner, Department of Zoology, Northeastern Hill University, Shillong for the technical assistance provided during the course of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suman Kumaria.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 52 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhattacharyya, P., Kumaria, S., Job, N. et al. Phyto-molecular profiling and assessment of antioxidant activity within micropropagated plants of Dendrobium thyrsiflorum: a threatened, medicinal orchid. Plant Cell Tiss Organ Cult 122, 535–550 (2015). https://doi.org/10.1007/s11240-015-0783-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-015-0783-6

Keywords

Navigation