Skip to main content
Log in

Cysteine Protease 51 (CP51), an anther-specific cysteine protease gene, is essential for pollen exine formation in Arabidopsis

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Cysteine proteases play important roles in intracellular protein degradation, programmed cell death and responses to environmental stimuli in plant. Although subclassification and biochemical analysis of major plant papain-like cysteine proteases (PLCPs) have been studied, the biological function of many PLCPs remained unknown. In this study, we identified a PLCP gene Cysteine Protease 51 (CP51) which participates in exine formation and anther development in Arabidopsis thaliana. Promoter-GUS fusion detection showed its specific expression in anthers at stages 9–12. RNA interference (RNAi) transgenic plants with reduced CP51 transcriptional levels exhibited a male sterile phenotype with aborted microspores, shortened siliques and fewer or no seeds. Cytological analysis indicated that pollen abortion occurred due to defective pollen exine and the tapetum degraded earlier during the transition from the uninucleated stage to the binucleated stage. Scanning electron microscopy demonstrated that aborted microspores lacked complete or normal reticulate exine, and the intine membrane was extruded in the pollens of CP51-RNAi plants. Transmission electron microscopy further revealed that the tapetum degeneration was initiated early and that normal tectum connections to the bacula were missing in anthers of CP51-RNAi plants. Taken together, these results suggested that CP51 critically mediates tapetum stability and pollen exine formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

PLCPs:

Papain-like cysteine proteases

qRT-PCR:

Quantitative real-time polymerase chain reaction

PCD:

Programmed cell death

WT:

Wild-type

GUS:

β-Glucuronidase

Kan:

Kanamycin

NPTII :

Neomycin phosphotransferase

HPT :

Hygromycin B phosphotransferase

DAPI:

4′,6′-Diamidino-2-phenylindole

ORF:

Open reading frame

References

  • Alexander MP (1969) Differential staining of aborted and nonaborted pollen. Stain Technol 44:117–122

    PubMed  CAS  Google Scholar 

  • Ariizumi T, Toriyama K (2011) Genetic regulation of sporopollenin synthesis and pollen exine development. Annu Rev Plant Biol 62:437–460

    Article  PubMed  CAS  Google Scholar 

  • Bate N, Twell D (1998) Functional architecture of a late pollen promoter: pollen-specific transcription is developmentally regulated by multiple stage-specific and codependent activator elements. Plant Mol Biol 37:859–869

    Article  PubMed  CAS  Google Scholar 

  • Bedinger P (1992) The remarkable biology of pollen. Plant Cell 4:879–889

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Beers EP, Jones AM, Dickerman AW (2004) The S8 serine, C1A cysteine and A1 aspartic protease families in Arabidopsis. Phytochemistry 65:43–58

    Article  PubMed  CAS  Google Scholar 

  • Beyene G, Foyer CH, Kunert KJ (2006) Two new cysteine proteinases with specific expression patterns in mature and senescent tobacco (Nicotiana tabacum L.) leaves. J Exp Bot 57:1431–1443

    Article  PubMed  CAS  Google Scholar 

  • Blackmore S, Wortley AH, Skvarla JJ, Rowley JR (2007) Pollen wall development in flowering plants. New Phytol 174:483–498

    Article  PubMed  CAS  Google Scholar 

  • Chang HS, Zhang C, Chang YH, Zhu J, Xu XF, Shi ZH, Zhang XL, Ling Xu, Huang H, Zhang S, Yang ZN (2012) No primexine and plasma membrane undulation is essential for primexine deposition and plasma membrane undulation during microsporogenesis in Arabidopsis. Plant Physiol 158:264–272

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Chen YN, Lei SL, Zhou ZF, Zeng FQ, Yi B et al (2009) Analysis of gene expression profile in pollen development of recessive genic male sterile Brassica napus L. line S45A. Plant Cell Rep 28:1363–1372

    Article  PubMed  CAS  Google Scholar 

  • Chen LQ, Hou BH, Lalonde S et al (2010) Sugar transporters for intercellular exchange and nutrition of pathogens. Nature 468:527–532

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  PubMed  CAS  Google Scholar 

  • DeGuzman R, Riggs CD (2000) A survey of proteinases active during meiotic development. Planta 210:921–924

    Article  PubMed  CAS  Google Scholar 

  • Diaz-Mendoza M, Velasco-Arroyo B, Gonzalez-Melendi P, Martinez M, Diaz I (2014) C1A cysteine protease-cystatin interactions in leaf senescence. J Exp Bot. doi:10.1093/jxb/eru043

    PubMed  Google Scholar 

  • Dobritsa AA, Lei Z, Nishikawa S, Urbanczyk-Wochniak E, Huhman DV, Preuss D, Sumner LW (2010) LAP5 and LAP6 encode anther-specific proteins with similarity to chalcone synthase essential for pollen exine development in Arabidopsis. Plant Physiol 153:937–955

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Dun XL, Zhou ZF, Xia SQ, Wen J, Yi B, Shen JX, Ma CZ, Tu JX, Fu TD (2011) BnaC.Tic40, a plastid inner membrane translocon originating from Brassica oleracea, is essential for tapetal function and microspore development in Brassica napus. Plant J 68:532–545

    Article  PubMed  CAS  Google Scholar 

  • Fan J, Yang YW, Gao X, Deng W, Falara V, Kanellis AK, Li ZG (2009) Expression of a senescence-associated cysteine protease gene related to peel pitting of navel orange (Citrus sinensis L. Osbeck). Plant Cell Tissue Cult 98:281–289

    Article  CAS  Google Scholar 

  • Goldberg RB, Beals TP, Sanders PM (1993) Anther development: basic principles and practical applications. Plant Cell 5:1217–1229

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Guan YF, Huang XY, Zhu J, Gao JF, Zhang HX, Yang ZN (2008) RUPTURED POLLEN GRAIN1, a member of the MtN3/saliva gene family, is crucial for exine pattern formation and cell integrity of microspores in Arabidopsis. Plant Physiol 147:852–863

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Guerrero C, Calle M, Reid MS, Valpuesta V (1998) Analysis of the expression of two thioprotease genes from day lily (Hemerocallis spp.) during flower senescence. Plant Mol Biol 36:565–571

    Article  PubMed  CAS  Google Scholar 

  • Heslop-Harrison J (1971) Wall pattern formation in angiosperm microsporogenesis. Symp Soc Exp Biol 25:277–300

    PubMed  CAS  Google Scholar 

  • Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database. Nucleic Acids Res 27:297–300

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ho SL, Tong WF, Yu SM (2000) Multiple mode regulation of a cysteine proteinase gene expression in rice. Plant Physiol 122:57–66

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ito T, Shinozaki K (2002) The MALE STERILITY1 gene of Arabidopsis, encoding a nuclear protein with a PHD-finger motif, is expressed in tapetal cells and is required for pollen maturation. Plant Cell Physiol 43:1285–1292

    Article  PubMed  CAS  Google Scholar 

  • Ito T, Nagata N, Yoshiba Y, Ohme-Takagi M, Ma H, Shinozaki K (2007) Aabidopsis MALE STERILITY1 encodes a PHD-type transcription factor and regulates pollen and tapetum development. Plant Cell 19:3549–3562

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kamphuis IG, Drenth J, Baker EN (1985) Thiol proteases: comparative studies based on the high-resolution structures of papain and actinidin, and on amino acid sequence information from cathepsins B and H, and stem bromelain. J Mol Biol 182:317–329

    Article  PubMed  CAS  Google Scholar 

  • Kapoor S, Kobayashi A, Takatsuji H (2002) Silencing of the tapetum-specific zinc finger gene TAZ1 causes premature degeneration of tapetum and pollen abortion in Petunia. Plant Cell 14:2353–2367

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Karrer KM, Peiffer SL, Ditomas ME (1993) Two distinct gene subfamilies within the family of cysteine protease genes. Proc Natl Acad Sci USA 90:3063–3067

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kim YJ, Yeu SY, Park BS, Koh HJ, Song HT, Seo HS (2012) Protein disulfide isomerase-like protein 1-1 controls endosperm development through regulation of the amount and composition of seed proteins in rice. PLoS ONE 7:e44493

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Koizumi M, Yamaguchi-Shinozaki K, Tsuji H, Shinozaki K (1993) Structure and expression of two genes that encode distinct drought-inducible cysteine proteinases in Arabidopsis thaliana. Gene 129:175–182

    Article  PubMed  CAS  Google Scholar 

  • Ku S, Yoon H, Suh HS, Chung YY (2003) Male-sterility of thermosensitive genic male-sterile rice is associated with premature programmed cell death of the tapetum. Planta 217:559–565

    Article  PubMed  CAS  Google Scholar 

  • Lee S, Jung KH, An G, Chung YY (2004) Isolation and characterization of a rice cysteine protease gene, OsCP1, using T-DNA gene trap system. Plant Mol Biol l54:755–765

    Article  Google Scholar 

  • Li N, Zhang DS, Liu HS, Yin CS, Li XX, Lian WQ, Yuan Z, Xu B, Chu HW, Jia Wang J, Wen TQ, Huang H, Luo D, Ma H, Zhang DB (2006) The rice tapetum degeneration retardation gene is required for tapetum degradation and anther development. Plant Cell 18:2999–3014

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Li XW, Gao XQ, Wei Y, Deng L, Ouyang YD, Chen GX, Li XH, Zhang QF, Wu CY (2011) Rice APOPTOSIS INHIBITOR 5 coupled with two DEAD-box adenosine 5′-triphosphate-dependent RNA helicases regulates tapetum degeneration. Plant Cell 23:1416–1434

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−△△Ct method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Martinez M, Cambra I, Carrillo L, Mercedes DM, Diaz I (2009) Characterization of the entire cystatin gene family in Barley and their target cathepsin L-like cysteine-proteases, partners in the hordein mobilization during seed germination. Plant Physiol 151:1531–1545

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • McLellan H, Gilroy EM, Yun B-W, Birch PRJ, Loake GJ (2009) Functional redundancy in the Arabidopsis cathepsin B gene family contributes to basal defence, the hypersensitive response and senescence. New Phytol 183:408–418

    Article  PubMed  CAS  Google Scholar 

  • Meyers BC, Lee DK, Vu TH, Tej SS, Edberg SB, Matvienko M, Tindell LD (2004) Arabidopsis MPSS. An online resource for quantitative expression analysis. Plant Physiol 135:801–813

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Parish RW, Li SF (2010) Death of a tapetum: a programme of developmental altruism. Plant Sci 178:73–89

    Article  CAS  Google Scholar 

  • Paxson-Sowders DM, Owen HA, Makaroff CA (1997) A comparative ultrastructural analysis of exine pattern development in WT Arabidopsis and a mutant defective in pattern formation. Protoplasma 198:53–65

    Article  Google Scholar 

  • Piffanelli P, Ross JHE, Murphy DJ (1998) Biogenesis and function of the lipidic structures of pollen grains. Sex Plant Reprod 11:65–80

    Article  CAS  Google Scholar 

  • Qin P, Tu B, Wang Y, Deng L, Quilichini TD, Li T, Wang H, Ma B, Li S (2013) ABCG15 encodes an ABC transporter protein, and is essential for post-meiotic anther and pollen exine development in rice. Plant Cell Physiol 54:138–154

    Article  PubMed  CAS  Google Scholar 

  • Quilichini TD, Friedmann MC, Samuels AL, Douglas CJ (2010) ATP-Binding Cassette transporter G26 is required for male fertility and pollen exine formation in Arabidopsis. Plant Physiol 154:678–690

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Rawlings ND, Barrett AJ, Bateman A (2010) MEROPS: the peptidase database. Nucleic Acids Res 38:227–233

    Article  Google Scholar 

  • Richau KH, Kaschani F, Verdoes M, Pansuriya TC, Niessen S et al (2012) Subclassification and biochemical analysis of plant papain-like cysteine proteases displays subfamily-specific characteristics. Plant Physiol 158:1583–1599

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Rogers HJ, Bate N, Combe J, Sullivan J, Sweetman J, Swan C, Lonsdale DM, Twell D (2001) Functional analysis of cis-regulatory elements within the promoter of the tobacco late pollen gene g10. Plant Mol Biol 45:577–585

    Article  PubMed  CAS  Google Scholar 

  • Ross KJ, Fransz P, Jones GH (1996) A light microscopic atlas of meiosis in Arabidopsis thaliana. Chromosome Res 4:507–516

    Article  PubMed  CAS  Google Scholar 

  • Sanders PM, Bui AQ, Weterings K, McIntire KN, Hsu Y-C, Lee PY, Truong MT, Beals TP, Goldberg RB (1999) Anther developmental defects in Arabidopsis thaliana male-sterile mutants. Sex Plant Reprod 11:297–322

    Article  CAS  Google Scholar 

  • Scott RJ, Spielman M, Dickinson HG (2004) Stamen structure and function. Plant Cell (Suppl) 16:S46–S60

    Article  CAS  Google Scholar 

  • Sessions A, Weigel D, Yanofsky MF (1999) The Arabidopsis thaliana MERISTEM LAYER 1 promoter specifies epidermal expression in meristems and young primordia. Plant J 20:259–263

    Article  PubMed  CAS  Google Scholar 

  • Shutov AD, Vaintrub JA (1987) Degradation of storage proteins in germinating seeds. Phytochemistry 26:1557–1566

    Article  CAS  Google Scholar 

  • Solomon M, Beleghi B, Delledonne M, Menachem E, Levine A (1999) The involvement of cysteine proteases and protease inhibitor genes in the regulation of programmed cell death in plants. Plant Cell 11:431–443

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sorensen A, Krober S, Unte US, Huijser P, Dekker K, Saedler H (2003) The Arabidopsis ABORTED MICROSPORES (AMS) gene encodes a MYC class transcription factor. Plant J 33:413–423

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Van der Hoorn RAL (2008) Plant proteases: from phenotypes to molecular mechanism. Annu Rev Plant Biol 59:191–223

    Article  PubMed  Google Scholar 

  • Vizcay-Barrena G, Wilson ZA (2006) Altered tapetal PCD and pollen wall development in the Arabidopsis ms1 mutant. J Exp Bot 57:2709–2717

    Article  PubMed  CAS  Google Scholar 

  • Wesley SV, Helliwell CA, Smith NA, Wang MB, Rouse DT et al (2001) Construct design for efficient, effective and high-throughput gene silencing in plants. Plant J 27:581–590

    Article  PubMed  CAS  Google Scholar 

  • Wilson ZA, Morroll SM, Dawson J, Swarup R, Tighe PJ (2001) The Arabidopsis MALE STERILITY1 (MS1) gene is a transcriptional regulator of male gametogenesis, with homology to the PHD-finger family of transcription factors. Plant J 28:27–39

    Article  PubMed  CAS  Google Scholar 

  • Yang C, Vizcay-Barrena G, Conner K, Wilson ZA (2007) MALE STERILITY1 is required for tapetal development and pollen wall biosynthesis. Plant Cell 19:3530–3548

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yi B, Zeng FQ, Lei SL, Yao XQ, Zhu Y, Wen J et al (2010) Two duplicate CYP704B1 homologous genes BnMs1 and BnMs2 are required for pollen exine formation and tapetal development in Brassica napus. Plant J 63:925–938

    Article  PubMed  CAS  Google Scholar 

  • Zhang XM, Wang Y, Lv XM, Li H, Sun P, Lu H, Li FI (2009) NtCP56, a new cysteine protease in Nicotiana tabacum L., involved in pollen grain development. J Exp Bot 60:1569–1577

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zhou ZF, Dun XL, Xia SQ, Shi DY, Qin MM et al (2012) BnMs3 is required for tapetal differentiation and degradation, microspore separation, and pollen-wall biosynthesis in Brassica napus. J Exp Bot 63:2041–2058

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zhu L, Shi JX, Zhao GC, Zhang DB, Liang WQ (2013) Post-meiotic Deficient Anther1 (PDA1) encodes an ABC transporter required for the development of anther cuticle and pollen exine in rice. J Plant Biol 56:59–68

    Article  CAS  Google Scholar 

  • Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W (2004) Genevestigator. Arabidopsis microarray database and analysis toolbox. Plant Physiol 136:2621–2632

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zinkl GM, Zwiebel BI, Grier DG, Preuss D (1999) Pollen-stigma adhesion in Arabidopsis: a species-specific interaction mediated by lipophilic molecules in the pollen exine. Develop 126:5431–5440

    CAS  Google Scholar 

Download references

Acknowledgments

We thank Jianbo Cao (Huazhong Agricultural University, China) for help with scanning electron microscopy and transmission electron microscope. This work was supported by the National Basic Research Program of China (2011CB109305), the State High-Tech Development Plan of China (2013AA102602), Commonweal Specialized Research Fund of China Agriculture (201103016), Innovation Program of Wuhan Academy of Agricultural Science and Technology (CX201242) and the Hubei Agriculture Science and Technology Innovation Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengyi Liu.

Additional information

Yongxue Yang and Caihua Dong have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Dong, C., Yu, J. et al. Cysteine Protease 51 (CP51), an anther-specific cysteine protease gene, is essential for pollen exine formation in Arabidopsis . Plant Cell Tiss Organ Cult 119, 383–397 (2014). https://doi.org/10.1007/s11240-014-0542-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-014-0542-0

Keywords

Navigation