Skip to main content
Log in

Role of ethylene and jasmonic acid on rhizome induction and growth in rhubarb (Rheum rhabarbarum L.)

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Experiments were conducted to elucidate the hormonal induction and regulation of rhizome growth in rhubarb (Rheum rhabarbarum L.). It was found that ethylene is the key regulator of rhizome induction and development. The role of jasmonic acid (JA) and its interaction with ethylene in rhizome induction and growth were also examined. Both ethylene and JA have a significant effect on promoting rhizome formation in vitro. Conversely, the ethylene biosynthesis inhibitor aminoethoxyvinylglycine (AVG) (1.5 μM) inhibited rhizome induction in multiple-shoot clumps in vitro, and suppressed the stimulatory effects of exogenously applied ethephon (1 mg l−1) and JA (10 ng l−1) in promoting mini-rhizome formation, further confirming the role of endogenous ethylene in the process. In addition, rhizome growth was significantly enhanced in the presence of both ethylene and JA (ethephon 1 mg l−1 and JA 10 ng l−1) compared to JA alone. These results suggest that endogenous ethylene is the key regulator of rhizome growth in rhubarb and JA promotes rhizome formation, possibly through inducing endogenous ethylene synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

JA:

Jasmonic acid

ACC:

1-Aminocyclopropane-1-carboxylic acid

AVG:

Aminoethoxyvinylglycine

PGRs:

Plant growth regulators

References

  • Abeles FB, Morgan PW, Saltveit ME Jr (1992) Ethylene in plant biology, 2nd edn. Academic Press, New York, USA, 414 pp

    Google Scholar 

  • Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P, Stevenson DK, Zimmerman J, Barajas P, Cheuk R, Gadrinab C, Heller C, Jeske A, Koesema E, Meyers CC, Parker H, Prednis L, Ansari Y, Choy N, Deen H, Geralt M, Hazari N, Hom E, Karnes M, Mulholland C, Ndubaku R, Schmidt I, Guzman P, Aguilar-Henonin L, Schmid M, Weigel D, Carter DE, Marchand T, Risseeuw E, Brogden D, Zeko A, Crosby WL, Berry CC, Ecker JR (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301:653–657

    Article  PubMed  Google Scholar 

  • Bhatia AK, Pandita ML, Khurana SC (1992) Plant growth substances and sprouting conditions—II. Effect on tuber yield and multiplication rate in seed potato production. J Indian Potato Assoc 19:154–156

    Google Scholar 

  • Bjornseth EH (1946) The effect on yield of freezing and various ethylene treatments in breaking the dormancy of rhubarb. Proc Am Soc Hort Sci 48:369−372

    CAS  Google Scholar 

  • Bleecker AB, Kende H (2000) Ethylene: a gaseous signal molecule in plants. Annu Rev Cell Dev Biol 16:1–18

    Article  PubMed  CAS  Google Scholar 

  • Caldiz DO (1996) Seed potato (Solanum tuberosum L.) yield and tuber number increase after foliar applications of cytokinins and gibberellic acid under field and glasshouse conditions. Plant Growth Regul 20:185–188

    Article  CAS  Google Scholar 

  • Debeljak N, Regvar M, Dixon KW, Sivasithamparam K (2002) Induction of tuberisation in vitro with jasmonic acid and sucrose in an Australian terrestrial orchid, Pterostylis sanguinea. J Plant Growth Regul 36:253–260

    Article  CAS  Google Scholar 

  • Dimasi-Theriou K, Economou AS, Sfakiotakis EM (1993) Promotion of petunia (Petunia hybrida L.) regeneration in vitro by ethylene. Plant Cell Tissue Organ Cult 32:219–225

    Article  CAS  Google Scholar 

  • Ecker JR (1995) The ethylene signal transduction pathway in plants. Science 268:667–675

    Article  PubMed  CAS  Google Scholar 

  • El-Antably HMM, Wareing PF, Hillman J (1967) Some physiological responses to d,l abscisin (dormin). Planta 73:74–90

    Article  CAS  Google Scholar 

  • Etheridge N, Chen Y, Schaller GE (2005) Dissecting the ethylene pathway of Arabidopsis. Brief Funct Genomic Proteomic 3(4): 372–381

    Article  PubMed  CAS  Google Scholar 

  • Feys BJ, Parker JE (2000) Interplay of signaling pathways in plant disease resistance. Trends Genet 16:449–455

    Article  PubMed  CAS  Google Scholar 

  • Gao XY, Jiang Y, Lu JQ, Tu PF (2009) One single standard substance for the determination of multiple anthraquinone derivatives in rhubarb using high-performance liquid chromatography-diode array detection. J Chromatogr A 1216(11):2118–2123

    Article  PubMed  CAS  Google Scholar 

  • Glazebrook J (2001) Genes controlling expression of defense responses in Arabidopsis—2001 status. Curr Opin Plant Biol 4:301–308

    Article  PubMed  CAS  Google Scholar 

  • Hartmann HT, Kester DE, Davies FT Jr, Geneve RL (2002) Plant propagation: principles and practices, 7th edn. Prentice Hall, New Jersey, USA, 880 pp

    Google Scholar 

  • Jásik J, de Klerk GJ (2006) Effect of methyl jasmonate on morphology and dormancy development in lily bulblets regenerated in vitro. J Plant Growth Regul 25:45–51

    Article  Google Scholar 

  • Jásik J, Mantell SH (2000) Effects of jasmonic acid and its methylester on in vitro microtuberisation of three food yam (Dioscorea) species. Plant Cell Rep 19:863–867

    Article  Google Scholar 

  • Kim SK, Kim JT, Jang SW, Lee SC, Lee BH, Lee IJ (2005) Exogenous effect of gibberellins and jasmonate on tuber enlargement of Dioscorea opposita. Agron Res 3:39–44

    Google Scholar 

  • Koda Y, Kikuta Y (1991) Possible involvement of jasmonic acid in tuberization of yam plants. Plant Cell Physiol 32:629–633

    CAS  Google Scholar 

  • León J, Rojo E, Sánchez-Serrano JJ (2001) Wound signalling in plants. J Exp Bot 52:1–9

    Article  PubMed  Google Scholar 

  • Liu J, Mukherjee I, Reid DM (1990) Adventitious rooting in hypocotyls of sunflower (Helianthus annus L.) seedlings. III. The role of ethylene. Physiol Plant 78:268–276

    Article  CAS  Google Scholar 

  • Lorenzo O, Solano R (2005) Molecular players regulating the jasmonate signalling network. Curr Opin Plant Biol 8:532–540

    Article  PubMed  CAS  Google Scholar 

  • Lorenzo O, Piqueras R, Sánchez-Serrano JJ, Solano R (2003) ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jasmonate pathways in plant defense. Plant Cell 15:165–178

    Article  PubMed  CAS  Google Scholar 

  • Moore R, Clark WD, Vodopich DS (1998) Botany, 2nd edn. McGraw-Hill, New York, USA, 512 pp

    Google Scholar 

  • Morris D (1996) Hormonal regulation of source–sink relationship: an overview of potential control mechanisms. In: Zamski E, Schaffer AA (eds) Photoassimilate distribution in plants and crops: source–sink relationship. M. Dekker, New York, pp 441–465

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Neuteboom CE, Lada RL, Caldwell CD, Eaton L, Havard P (2002) Ethephon and Spermidine enhance bulking in dicer carrots (Daucus carota var. sativus). PGRSA Q 30:77

    Google Scholar 

  • O’Donnell PJ, Calvert C, Atzorn R, Wasternack C, Leyser HMO, Bowles DJ (1996) Ethylene as a signal mediating the wound response of tomato plants. Science 274:1914–1917

    Article  PubMed  Google Scholar 

  • Obasi MO, Atanu SO (2004) Effect of growth regulators on growth, flowering and rhizome yield of ginger (Zingiber officinate Rosc). Niger J Hort Sci 9:69–73

    Google Scholar 

  • Prescott AG, John P (1996) DIOXYGENASES: molecular structure and role in plant metabolism. Annu Rev Plant Physiol Plant Mol Biol 47:245–271

    Article  PubMed  CAS  Google Scholar 

  • Raven PH, Evert RF, Eichhorn SE (2005) Biology of plants, 7th edn. W.H. Freeman and Company, New York, 944 pp

    Google Scholar 

  • Ravnikar M, Žel J, Plaper I, Špacapan A (1993) Jasmonic acid stimulates shoot and bulb formation of garlic in vitro. J Plant Growth Regul 12:73–77

    Article  CAS  Google Scholar 

  • Rayirath UP (2008) Physiology of rhizome growth and development and propagule production technologies in rhubarb (Rheum rhabarbarum L.). Dissertation, NSAC, Dalhousie University, Canada

  • Rayirath UP, Lada RR, Caldwell CD, Asiedu SK, Sibley KJ, Adams AD (2009) CCC and Prohexadione-Ca enhance rhizome growth and lateral bud production in rhubarb (Rheum rhabarbarum L.). J Plant Growth Regul 28:137–146

    Article  CAS  Google Scholar 

  • Reid MS (1987) Ethylene in plant growth, development, and senescence. In: Davies PJ (ed) Plant hormones and their role in plant growth and development, 3rd edn. Kluwer Academic Publishers, Boston, USA, pp 257–279

    Google Scholar 

  • Roggemans J, Claes M-C (1979) Rapid clonal propagation of rhubarb by in vitro culture of shoot-tips. Sci Hortic 11:241–246

    Article  CAS  Google Scholar 

  • Romanov GA, Aksenova NP, Konstantinova TN, Golyanovskaya SA, Kossmann J, Willmitzer L (2000) Effect of indole-3-acetic acid and kinetin on tuberisation parameters of different cultivars and transgenic lines of potato in vitro. Plant Growth Regul 32:245–251

    Article  CAS  Google Scholar 

  • Saniewski M, Kawa-Miszczak L, Wegrzynowicz-Lesiak E, Misczcak A, Ueda J, Miyamoto K (2003) Interaction of methyl jasmonate and 1-aminocyclopropane-1-carboxylic acid (ACC) in regulation of some physiological processes in uncooled and cooled tulip bulbs. In: Proceedings of the XXVI International Horticultural Congress: Elegant Science in Floriculture, Toronto, Canada, August 2002, ISHS Acta Horticulturae, vol 622, pp 233–241

  • Santos I, Salema R (2000) Promotion by jasmonic acid of bulb formation in shoot cultures of Narcissus triandrus L. Plant Growth Regul 30:133–138

    Article  CAS  Google Scholar 

  • SAS Institute Inc. (1999) Proprietary Software Version 8. Cary, NC, USA

  • Schaller F, Schaller A, Stintzi A (2005) Biosynthesis and metabolism of jasmonates. J Plant Growth Regul 23:179–199

    Google Scholar 

  • Shi YH, Zhu SW, Mao XZ, Feng JX, Qin YM, Zhang L, Cheng J, Wei LP, Wang ZY, Zhu YX (2006) Transcriptome profiling, molecular biological, and physiological studies reveal a major role for ethylene in cotton fiber cell elongation. Plant Cell 18:651–664

    Article  PubMed  CAS  Google Scholar 

  • Tang X, Chang L, Wu S, Li P, Liu G, Wang NN (2008) Auto-regulation of the promoter activities of Arabidopsis 1-aminocyclopropane-1-carboxylate synthase genes AtACS4, AtACS5, and AtACS7 in response to different plant hormones. Plant Sci 175:161–167

    Article  CAS  Google Scholar 

  • Van Zhong G, Burns JK (2003) Profiling ethylene-regulated gene expression in Arabidopsis thaliana by microarray analysis. Plant Mol Biol 53:117–131

    Article  PubMed  CAS  Google Scholar 

  • Vreugenhil D, van Dijk W (1989) Effects of ethylene on the tuberization of potato (Solanum tuberosum) cuttings. Plant Growth Regul 8:31–39

    Google Scholar 

  • Walkey DGA, Mathews KA (1979) Rapid clonal propagation of rhubarb (Rheum rhaponticum L.) from meristem-tips in tissue culture. Plant Sci Lett 14:287–290

    Article  Google Scholar 

  • Wardlaw IF (1990) The control of carbon partitioning in plants. New Phytol 116:341–381

    Article  CAS  Google Scholar 

  • Xu X, van Lammeren AAM, Vermeer E, Vreugdenhil D (1998) The role of gibberellin, abscisic acid, and sucrose in the regulation of potato tuber formation in vitro. Plant Physiol 117:575–584

    Article  PubMed  CAS  Google Scholar 

  • Yang SF, Hoffman NE (1984) Ethylene biosynthesis and its regulation in higher plants. Annu Rev Plant Physiol Plant Mol Biol 35:155–189

    Article  CAS  Google Scholar 

  • Zaib-Un-Nissa A, Rafiq A (1980) Effect of ABA and GA3 on tuberization and some chemical constituents of potato. Plant Cell Physiol 21:1343–1346

    Google Scholar 

  • Zhang ZJ, Zhou WJ, Li HZ, Zhang GQ, Subrahmaniyan K, Yu JQ (2006) Effect of jasmonic acid on in vitro explant growth and microtuberization in potato. Biol Plant 50:453–456

    Article  CAS  Google Scholar 

  • Zheng CS, Zheng XS, Ohno H, Hara T, Matsui S (2005) Involvement of ethylene and gibberellin in the development of rhizomes and rhizome-like shoots in oriental cymbidium hybrids. J Jpn Soc Hortic Sci 74:306–310

    Article  CAS  Google Scholar 

  • Zhu C, Gan L, Shen Z, Xia K (2006) Interactions between jasmonates and ethylene in the regulation of root hair development in Arabidopsis. J Exp Bot 57:1299–1308

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from AgriFocus 2000—Technology Development Program (Nova Scotia Department of Agriculture and Fisheries) and Knol Farms Ltd., Nova Scotia, Canada, to Dr. Lada is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajasekaran R. Lada.

Appendix: details of the plant growth regulator application

Appendix: details of the plant growth regulator application

Plant-cell-tested commercial formulations of growth regulators from Sigma-Aldrich, Canada, were used. Stock solutions of GA3 (1,000 mg l−1), ABA (100 mg l−1) and JA (1,000 mg l−1) were prepared by dissolving them first in four drops of 95% ethanol and diluted with distilled water to the final stock concentrations. ACC, AVG and ethephon (Sigma-Aldrich, Canada) were dissolved in distilled water to make the stock solutions of concentrations 1,000 mg l−1, 50 mg l−1 and 1,000 mg l−1, respectively. ABA and GA3 were autoclaved with other media components, whereas all other growth regulators were filter-sterilised and added to the autoclaved culture media after cooling to 45–50°C. An ethanol control (with four drops of 95% ethanol) and a distilled water control were maintained in all three sets of experiments, since most of the plant growth regulators (PGRs) were dissolved in ethanol before making up the stock solution.

The concentrations of each PGR used in each stage of the experiments are given below.

Treatments in stage I

  • 10 ng l−1, 1 μg l−1, 10 μg l−1, 1 mg l−1 JA

  • 0.1 μg l−1, 1 μg l−1, 10 μg l−1, 100 μg l−1 ABA

  • 10 mg l−1, 20 mg l−1, 40 mg l−1, 80 mg l−1 GA3

  • 1 mg l−1, 10 mg l−1, 50 mg l−1 ethephon

  • Control DW—control with distilled water (DW)

  • Control EtOH—control with ethanol (EtOH)

Treatments in stage II

  • 1 mg l−1, 10 mg l−1, 50 mg l−1 ethephon

  • 0.5 mM, 1.0 mM, 1.5 mM ACC

  • 0.5 μM, 1.0 μM, 1.5 μM AVG

  • Control DW—control with distilled water (DW)

  • Control EtOH—control with ethanol (EtOH)

Treatments in stage III

  • 1 mg l−1, 10 mg l−1 ethephon

  • 10 ng l−1, 1 μg l−1 JA

  • 1 mg l−1 ethephon and 1.5 μM AVG

  • 10 ng l−1 JA and 1.5 μM AVG

  • 10 ng l−1 JA and 1 mg l−1 ethephon

  • 10 ng l−1 JA, 1 mg l−1 ethephon and 1.5 μM AVG

  • Control DW—control with distilled water (DW)

  • Control EtOH—control with ethanol (EtOH)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rayirath, U.P., Lada, R.R., Caldwell, C.D. et al. Role of ethylene and jasmonic acid on rhizome induction and growth in rhubarb (Rheum rhabarbarum L.). Plant Cell Tiss Organ Cult 105, 253–263 (2011). https://doi.org/10.1007/s11240-010-9861-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-010-9861-y

Keywords

Navigation