Skip to main content
Log in

Direct somatic embryogenesis from pericycle cells of broccoli (Brassica oleracea L. var. italica) root explants

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Cotyledon, hypocotyl or root explants of 7-day-old broccoli seedlings were cultured on Murashige and Skoog (MS) agar or liquid medium supplemented with 1.0 mg l−1 2,4-dichlorophenoxyacetic acid (2,4-D). The frequency of direct somatic embryo formation was 100% when root explants were cultured in liquid medium. Histological analysis indicated that somatic embryos were initiated directly from the pericycle cell layers of root explants as early as 1 day after liquid culture. Genotype did not affect the frequency of somatic embryo formation or the number of somatic embryos per explant. All broccoli genotypes examined had 100% somatic embryo induction efficiency, and the number of somatic embryos per 0.8 mm root segment ranged from 22.9 in ‘Luhui’ to 26.0 in ‘Haizi’. The number of normally developed somatic embryos in culture increased with increasing 2,4-D concentration. Plantlet regeneration frequency was the highest (73.3%) when germinated plantlets were transferred to 1/2 strength MS agar medium containing 1.0 mg l−1 6-benzyladenine (BA). When regenerated plantlets were transferred to a greenhouse, approximately 75% survived and there were no morphological differences between regenerated plants and seed-derived controls. The protocols established in this study will benefit large-scale vegetative propagation and transformation-based genetic improvement of broccoli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

2,4-D:

2,4-Dichlorophenoxyacetic acid

BA:

6-Benzyladenine

GA3 :

Gibberellic acid

KN:

Kinetin

LRM:

Lateral root meristem

MS:

Murashige and Skoog

NAA:

α-Naphthaleneacetic Acid

PGRs:

Plant growth regulators

SAM:

Shoot apical meristem

TDZ:

Thidiazuron

References

  • Atta R, Laurens L, Boucheron-Dubuisson E, Guivarch A, Carnero E, Giraudat-Pautot V, Rech P, Chriqui D (2009) Pluripotency of Arabidopsis xylem pericycle underlies shoot regeneration from root and hypocotyl explants grown in vitro. Plant J 57:626–644

    Article  CAS  PubMed  Google Scholar 

  • Cao J, Earle ED (2003) Transgene expression in broccoli (Brassica oleracea var. italica) clones propagated in vitro via leaf explants. Plant Cell Rep 21:789–796

    CAS  PubMed  Google Scholar 

  • Cardoza V, Stewart CN (2004) Invited review: Brassica biotechnology: progress in cellular and molecular biology. In Vitro Cell Dev Biol Plant 40:542–551

    Article  CAS  Google Scholar 

  • Che P, Lall S, Howell SH (2007) Developmental steps in acquiring competence for shoot development in Arabidopsis tissue culture. Planta 226:1183–1194

    Article  CAS  PubMed  Google Scholar 

  • Chen LFO, Lin CH, Kelkar SM, Chang YM, Shaw JF (2008) Transgenic broccoli (Brassica oleracea var. italica) with antisense chlorophyllase (BoCLH1) delays postharvest yellowing. Plant Sci 174:25–31

    Article  CAS  Google Scholar 

  • Christey MC, Earle ED (1991) Regeneration of Brassica oleracea from peduncle explants. Hort Sci 26:1069–1072

    Google Scholar 

  • Cui J, Chen JJ, Henny RJ (2009) Regeneration of Aeschynanthus radicans via direct somatic embryogenesis and analysis of regenerants with flow cytometry. In Vitro Cell Dev Biol Plant 45:34–43

    Google Scholar 

  • Dubois T, Guedira M, Dubois J, Vasseur J (1990) Direct somatic embryogeneis in roots of Cichorium: is callose an early marker? Ann Bot 65:539–545

    Google Scholar 

  • Endemann E, Hristoforoglu K, Stauber T, Wilhelm E (2001) Assessment of age-related polyploidy in Quercus robur L. somatic embryogenesis and regenerated plants using DNA flow cytometry. Biol Plant 44:339–345

    Article  Google Scholar 

  • Gahan PB, George EF (2008) Adventitious regeneration. In: George EF, Hall MA, de Klerk GJ (eds) Plant propagation by tissue culture volume 1: the background. Springer, Dordrecht, pp 355–402

    Google Scholar 

  • Gaj MD (2001) Direct somatic embryogenesis as a rapid and efficient system for in vitro regeneration of Arabidopsis thaliana. Plant Cell Tissue Org Cult 64:39–46

    Article  Google Scholar 

  • Galbraith DW, Harkins KR, Maddox JM, Ayres NM, Sharma DP, Firoozabady E (1983) Rapid flow cytophotometric analysis of the cell cycle in intact plant tissues. Science 220:1049–1051

    Article  CAS  PubMed  Google Scholar 

  • Hemerly AS, Ferreira P, de Almeida Engler J, van Montagu M, Engler G, Inze D (1993) cdc2a expression in Arabidopsis is linked with competence for cell division. Plant Cell 5:1711–1723

    Article  CAS  PubMed  Google Scholar 

  • Iantcheva A, Slavov S, Prinsen E, Vlahova M, van Onckelen H, Atanassov A (2005) Embryo induction and regeneration from root explants of Medicago truncatula after osmotic pre-treatment. Plant Cell Tissue Org Cult 81:37–43

    Article  CAS  Google Scholar 

  • Komai F, Okuse I, Harada T (1996) Somatic embryogenesis and plant regeneration in culture of root segments of spinach (Spinacia oleracea L.). Plant Sci 113:203–208

    Article  CAS  Google Scholar 

  • Komai F, Masuda K, Ishizaki T, Harada T (1999) Sex expression in plants regenerated from the root callus of female and male spinach (Spinacia oleracea). Plant Sci 146:35–40

    Article  CAS  Google Scholar 

  • Metz TD, Dixt R, Earle ED (1995) Agrobacterium tumefaciens-mediated transformation of broccoli (Brassica oleracea var. italica) and cabbage (B. oleracea var. capitata). Plant Cell Rep 15:287–292

    Article  CAS  Google Scholar 

  • Mohanty S, Panda MK, Subudhi E, Nayak S (2008) Plant regeneration from callus culture of Curcuma aromatica and in vitro detection of somaclonal variation through cytophotometric analysis. Biol Plant 52:783–786

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:495–497

    Article  Google Scholar 

  • Nair RR, Dutta Gupta S (2006) High-frequency plant regeneration through cyclic secondary somatic embryogenesis in black pepper (Piper nigrum L.). Plant Cell Rep 24:699–707

    Article  CAS  PubMed  Google Scholar 

  • Park SY, Ahn JK, Lee WY, Murthy HN, Paek KY (2005) Mass production of Eleutherococcus koreanum plantlets via somatic embryogenesis from root cultures and accumulation of eleutherosides in regenerants. Plant Sci 168:1221–1225

    Article  CAS  Google Scholar 

  • Pedrose MC, Pais MS (1995) Factors controlling somatic embryogenesis. Plant Cell Tissue Org Cult 43:147–154

    Article  Google Scholar 

  • Phillips GC, Hubstenberger JF, Hansen EE (1995) Plant regeneration from callus and cell suspension cultures by somatic embryogenesis. In: Gamborg OL, Phillips GC (eds) Plant cell, tissue and organ culture: fundamental methods. Springer, Heidelberg, pp 81–90

    Google Scholar 

  • Puddephat IJ, Robinson HT, Fenning TM, Barbara DJ, Morton A, Pink DAC (2001) Recovery of phenotypically normal transgenic plants of Brassica oleracea upon Agrobacterium rhizogenes-mediated co-transformation and selection of transformed hairy roots by GUS assay. Mol Breed 7:229–242

    Article  CAS  Google Scholar 

  • Qin Y, Li HL, Guo YD (2007) High-frequency embryogenesis, regeneration of broccoli (Brassica oleracea var. italica) and analysis of genetic stability by RAPD. Sci Hortic 111:203–208

    Article  CAS  Google Scholar 

  • Shibli RA, Shatnawi M, Abu-Ein A, Al-Juboory KH (2001) Somatic embryogenesis and plant recovery from callus of Nabali olive (Olea europea L.). Sci Hortic 88:243–256

    Article  Google Scholar 

  • Souter M, Lindsey K (2000) Polarity and signaling in plant embryogenesis. J Exp Bot 51:971–983

    Article  CAS  PubMed  Google Scholar 

  • Sparrow PAC, Dale PJ, Irwin JA (2004) The use of phenotypic markers to identify Brassica oleracea genotypes for routine high-throughput Agrobacterium-mediated transformation. Plant Cell Rep 23:64–70

    Article  CAS  PubMed  Google Scholar 

  • Tremblay L, Levasseur C, Tremblay FM (1999) Frequency of somaclonal variation in plants of black spruce (Picea mariana, Pinaceae) and white spruce (P. glauca, Pinaceae) derived from somatic embryogenesis and identification of some factors involved in genetic instability. Am J Bot 86:1373–1381

    Article  PubMed  Google Scholar 

  • Twyford CT, Mantell SH (1996) Production of somatic embryos and plantlets from root cells of the greater yam. Plant Cell Tissue Org Cult 46:17–26

    Article  CAS  Google Scholar 

  • Verdeil JL, Alemanno L, Niemenak N, Tranbarger TJ (2007) Pluripotent versus totipotent plant stem cells: dependence versus autonomy? Trends Plant Sci 12:245–252

    Article  CAS  PubMed  Google Scholar 

  • Zenkteler M, Zenkteler E, Dostatnia I (2006) Somatic embryogenesis from broccoli stigmas in tissue culture. Acta Biol Crac Ser Bot 48:121–125

    Google Scholar 

  • Zuo J, Niu QW, Frugis G, Chua NH (2002) The WUSCHEL gene promotes vegetative-to-embryonic transition in Arabidopsis. Plant J 30:349–359

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (No. 30671701).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chang Yeon Yu or Cheng Hao Li.

Additional information

J. L. Yang and E. S. Seong contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, J.L., Seong, E.S., Kim, M.J. et al. Direct somatic embryogenesis from pericycle cells of broccoli (Brassica oleracea L. var. italica) root explants. Plant Cell Tiss Organ Cult 100, 49–58 (2010). https://doi.org/10.1007/s11240-009-9615-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-009-9615-x

Keywords

Navigation