Skip to main content
Log in

Factors controlling somatic embryogenesis

Cell wall changes as an in vivomarker of embryogenic competence

  • Published:
Plant Cell, Tissue and Organ Culture Aims and scope Submit manuscript

Abstract

Histological and ultrastructural, molecular and elemental distribution changes were investigated during the induction of direct somatic embryogenesis using theCamellia japonica leaf culture system. In this culture system, direct somatic embryogenesis is induced in a controlled way in a specific leaf region (leaf blade) within a leaf. Embryogenic and non-embryogenic leaf regions have characteristic energy-dispersive X-ray spectra already before induction. According to these results electron probe X-ray microanalysis (EPMA) can be a tool for early diagnosis of embryogenic competence. Histological studies showed that severe fluctuations in the number of calcium oxalate crystals and in starch accumulation occur after induction but only in induced tissues. Changes in the cell wall composition of competent cells occur shortly after the induction treatment. The induction of morphogenesis is linked to the appearance of callose covering the surface cells of induced leaves and calluses. A 2nd deposition of material (cutin) is necessary for normal somatic embryogenesis to occur. The involvement of lipid transfer proteins in the appearance of cutin in the embryogenic regions of the explant is suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aldrich R (1993) Potassium channels: advent of a new family. Nature 362: 127–132

    Google Scholar 

  • Ammirato PV (1985) Patterns of development in culture. In: Henke RR, Hughes KW, Constantin MP, Hollaender A (Eds) Tissue Culture in Forestry and Agriculture, (pp 9–29). Plenum Press, New York

    Google Scholar 

  • Apuya NR & Zimmerman JL (1992) Heat shock gene expression is controlled primarily at the translational level in carrot cells and somatic embryos. Plant Cell 4: 657–665

    Google Scholar 

  • Barrôco, R, Pedroso MC & Pais MS (1994) Induction of high frequency somatic embryogenesis inCamellia japonica. II Congresso Ibérico de Biotecnologia, Biotec 94, Vilamoura, Algarve, 1–4 October, BV P01

  • Blée E & Schuber F (1993) Biosynthesis of cutin monomers: involvement of a lipoxygenase/peroxygenase pathway. Plant J. 4: 113–123

    Google Scholar 

  • Borkird C, Choi JH & Sung ZR (1986) Effect of 2,4-dichlorophenoxyacetic acid on the expression of embryogenic program in carrot. Plant Physiol. 81: 1143–1146

    Google Scholar 

  • Borkird C, Choi JH, Jin ZH, Franz G, Hatzopoulos P, Chorneau R, Bonas U, Pelegri F & Sung ZR (1988) Developmental regulation of embryonic genes in plant. Proc. Natl. Acad. Sci. USA 85: 6399–6403

    Google Scholar 

  • Bruun L (1992)In situ andin vitro aspects of embryo-ovule interactions in intra- and interspecific beet crosses. In: Cresti M, Tierzi A (Eds) Sexual Plant Reproduction, (pp 185–191). Springer-Verlag, Heidelberg

    Google Scholar 

  • Carpita NC & Gibeaut DM (1993) Structural models of primary cell wall in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J. 3: 1–30

    Google Scholar 

  • Chalupa V (1992) Somatic embryogenesis and plant regeneration inQuercus-robur L. andQuercus-rubra L.. Lesnictvi 38: 475–481

    Google Scholar 

  • Choi J, Lui LS, Borkird C & Sung ZR (1987) Cloning of developmentally regulated genes. Proc. Nat Acad. Sci. 84: 1906–1910

    Google Scholar 

  • De Jong AJ, Cordewener J, Lo Schiavo F, Terzi M, Vandekerckhove J, Van Kammen A & De Vries SC (1992) A carrot somatic embryo mutant rescued by chitinase. Plant Cell 4: 425–433

    Google Scholar 

  • De Vries SC, Booij H, Meyerink P, Huisman G, Wilde DH, Thomas TL & Van Kammen A (1988) Acquisition of embryogenic potential in carrot cell-suspension cultures. Planta 176: 196–204

    Google Scholar 

  • Dubois T, Guedira M, Dubois J & Vasseur J (1990) Direct somatic embryogenesis in roots ofCichorium: is callose an early marker? Ann. Bot. 65: 539–545

    Google Scholar 

  • Dubois T, Guedira M, Dubois J & Vasseur J (1990) Direct somatic embryogenesis in leaves ofCichorium, a histological and SEM study of early stages. Protoplasma 162: 120–127

    Google Scholar 

  • Dutta PC & Appelqvist L-A (1991) Lipids and fatty acid patterns in developing seed, leaf, root, and in tissue culture initiated from embryos ofDaucus carota L.. Plant Sci. 75: 177–183

    Google Scholar 

  • Fleming AJ, Mandel T, Hofmann S, Sterk P, De Vries S & Kuhlemeier C (1992) Expression pattern of a tobacco lipid transfer protein gene within the shoot apex. Plant J. 2: 855–862

    Google Scholar 

  • Franceschi VR (1984) Developmental features of calcium oxalate crystal sand deposition inBeta vulgaris L. leaves. Protoplasma 120: 216–223

    Google Scholar 

  • Franceschi VR (1989) Calcium oxalate formation is a rapid and reversible process inLemna minor L. Protoplasma 148: 130–137

    Google Scholar 

  • Franz G, Hatzopoulos P, Jones TJ, Krauss M & Sung ZR (1989) Molecular and genetic analysis of an embryogenic gene, DC8, fromDaucus carota L. Mol. Gen. Genet. 218: 143–151

    Google Scholar 

  • Fraústo da Silva JJR & Williams RJP (1991) The biological chemistry of the elements: the inorganic chemistry of life (pp 120–217, 243–296, 467–527). Clarendon Press, Oxford

    Google Scholar 

  • Fujimura T & Komamine A (1980) The serial observation of embryogenesis in a carrot cell suspension culture. New Phytol. 86: 213–218

    Google Scholar 

  • Goldbeter A, Dupont G & Berridge MJ (1990) Calcium oscillations and protein phosphorylation. Proc. Natl. Acad. Sci. USA 87: 1461–1465

    Google Scholar 

  • Hahn K, DeBasio R & Taylor DL (1992) Patterns of elevated free calcium and calmodulin activation in living cells. Nature 359: 736–738

    Google Scholar 

  • Hatzopoulos P, Fong F & Sung ZR (1990) Abscisic acid regulation of DC8, a carrot embryogenic gene. Plant Physiol. 94: 690–695

    Google Scholar 

  • Hendriks T, Meijer EA, Thoma S, Kader J-C & De Vries SC (1994) The carrot extracellular lipid transfer protein EP2: quantitative aspects with respect to its putative role in cutin synthesis. In: Coruzzi G & Puigdomènech P (Eds) Plant Molecular Biology, Molecular Genetic Analysis of Plant Development and Metabolism, NATO ASI Series, Vol 81 (pp 85–94). Springer-Verlag, New York

    Google Scholar 

  • Homer HT & Zindler-Frank E (1982) Calcium oxalate crystals and crystal cells in the leaves ofRhynchosia caribaea (Leguminosae: Papilinoideae). Protoplasma 111: 10–18

    Google Scholar 

  • Hush JM, Overall RL & Newman IA (1991) A calcium influx precedes organogenesis inGraptopetalum. Plant, Cell and Environ. 14: 657–665

    Google Scholar 

  • Jansen MAK, Kreuger M, Booij H, Schel JHH & De Vries SC (1993) The role of calcium and calmodulin in early stages of carrot somatic embryogenesis. Plant Cell Rep. 9: 221–223

    Google Scholar 

  • Jürgens G, Mayer U, Torres Ruiz RA, Berleth T & Miséra S (1991) Genetic analysis of pattern formation in theArabidopsis embryo. Development 1: 27–38

    Google Scholar 

  • Jürgens G, Torres-Ruiz RA, Laux T, Mayer U & Berleth T (1994) Early events in the apical-basal pattern formation inArabidopsis. In: Coruzzi G & Puigdomènech P (Eds) Plant Molecular Biology-Molecular Genetic Analysis of Plant Development and Metabolism, NATO ASI Series H, Vol 81 (pp 95–104), Springer-Verlag, New York

    Google Scholar 

  • Kamada H & Harada H (1979) Studies on organogenesis in carrot tissue culture, II: Effects of aminoacids and inorganic nitrogenous compounds on somatic embryogenesis. Z. Pflanzenphysiol. 91: 453–463

    Google Scholar 

  • Kato M (1982) Results of organ culture onCamellia japonica andC. sinensis. Japan J. Breed. 32: 276–277

    Google Scholar 

  • Kato M (1986) Micropropagation through cotyledon culture ofCamellia japonica L. andC. sinensis L.. Japan J. Breed. 36: 31–38

    Google Scholar 

  • Kato M (1989) Polyploids ofCamellia through culture of somatic embryos. Hort Sci. 24: 1023–1025

    Google Scholar 

  • Kawahara R, Sunabori S, Fukuda H & Komamine A (1992) A gene expressed preferentially in the globular stage of somatic embryogenesis encodes elongation factor 1α in carrot. Eur. J. Biochem. 209: 157–162

    Google Scholar 

  • Kiyosue T, Yamaguchi-Shinozaki K, Shinozaki K, Higashi K, Satoh S, Kamada H & Harada H (1992) Isolation and characterization of a cDNA that encodes ECP31, an embryogenic-cell protein from carrot. Plant Mol. Biol. 19: 239–249

    Google Scholar 

  • Kiyosue T, Yamaguchi-Shinozaki K, Shinozaki K, Kamada H & Harada H (1993) cDNA cloning of EPC40, an embryogenic-cell protein in carrot, and its ecpression during somatic and zygotic embryogenesis. Plant Mol. Biol. 21: 1053–1068

    Google Scholar 

  • Kohlenbach HW (1977) Basic aspects of differentiation and plant regeneration from cell and tissue cultures. In: Barz W, Reinhard E, Zenk MH (Eds) Plant Tissue Culture and its Biotechnological Application (pp 355–366). Springer-Verlag, Heidelberg

    Google Scholar 

  • Koltunow AM, Truettner J, Cox KH, Wallroth M, & Goldberg RB (1990) Different temporal and spatial gene expression patterns occur during anther development. Plant Cell 2: 1201–1224

    Google Scholar 

  • Kubo Y, Baldwin TJ, Jan Y & Jan L (1993) Primary structure and functional expression of a mouse inward rectifier potassium channel. Nature 362: 127–132

    Google Scholar 

  • Liu C-m, Xu Z-h & Chua N-H (1993) Auxin polar transport is essential for the establishment of bilateral symmetry during early plant embryogenesis. Plant Cell. 5: 621–630

    Google Scholar 

  • Mayer U, Torres Ruiz RA, Berleth T, Miséra S & Jürgens G (1991) Mutations affecting body organization in theArabidopsis embryo. Nature 353: 402–407

    Google Scholar 

  • Mayer U, Büttner G & Jürgens G (1993) Apical-basal pattern formation in theArabidopsis embryo: studies of the role of thegnom gene. Development 117: 149–162

    Google Scholar 

  • Meinke DW (1992) A homoeotic mutant ofArabidopsis thaliana with leafy cotyledons. Science 258: 1647–1650

    Google Scholar 

  • Meinke DW (1994) Diversity of embryonic mutants identified followingAgrobacterium mediated seed transformation in,Arabidopsis thaliana. In: Coruzzi G, Puigdomènech P (Eds) Plant Molecular Biology-Molecular Genetic Analysis of Plant Development and Metabolism, NATO ASI Series H, Vol 81 (pp 105–116). Springer-Verlag, New York

    Google Scholar 

  • Michalczuk L, Cooke TJ & Cohen JD (1992) Auxin levels at different stages of carrot somatic embryogenesis. Phytochem. 31: 1097–1103

    Google Scholar 

  • Murashige T & Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15: 473–497

    Google Scholar 

  • Nakajima N, Morikawa H, Igarashi S & Senda M (1981) Differential effect of calcium and magnesium on mechanical properties of pea stem cell walls. Plant Cell Physiol. 22: 1305–1315

    Google Scholar 

  • Nakamura Y (1988) Efficient differentiation of adventitious embryos from cotydedon culture ofCamellia sinensis and otherCamellia species. Tea Res. J. 67: 1.12

    Google Scholar 

  • Neher E (1992) Controls on calcium influx. Nature 355: 298–299

    Google Scholar 

  • Neuman MC, Preece JE, Van Sambeek JW & Gaffney GR (1993) Somatic embryogenesis and callus production from cotyledon explants of eastern black walnut. Plant Cell Tissue Organ Cult. 32: 9–18

    Google Scholar 

  • Nomura K & Komamine A (1985) Identification and isolation of single cells that produce somatic embryos at a high frequency in a carrot suspension culture. Plant Physiol. 79: 988–991

    Google Scholar 

  • Northcote DH, Davey R & Lay J (1989) Use of antisera to localize callose, xylan and arabinogalactan in the cell-plate, primary and secondary walls of plant cells. Planta 178: 353–366

    Google Scholar 

  • Oparka KJ & Davies HV (1988) Subcellular localisation of calcium in potato tubers. Potato Res. 31: 297–304

    Google Scholar 

  • Pedroso MC & Pais MS (1992) A scanning electron microscope and x-ray microanalysis study during induction of morphogenesis inCamellia japonica L.. Plant Sci. 87: 99–108

    Google Scholar 

  • Pedroso MC & Pais MS (1993) Direct embryo formation in leaves ofCamellia japonica L.. Plant Cell Rep. 12: 639–643

    Google Scholar 

  • Pedroso MC & Pais MS (1994) Early detection of embryogenic competence and of polarity inCamellia japonica L. by electron probe x-ray microanalysis. Plant Sci. 96: 189–201

    Google Scholar 

  • Pedroso MC & Pais MS (1995a) Explant region-specific embryogenic competence and plant recovery inCamellia japonica. In Vitro Cell Dev. Biol. 31P (in press)

  • Pedroso MC & Pais MS (1995b) Plant regeneration from embryogenic suspension cultures ofCamellia japonica. In Vitro Cell Dev. Biol. 31P (in press)

  • Pedroso-Ubach MC (1991) Contribuição para a preservação e o melhoramento deCamellia japonica L. Master's Thesis (English abstract) (pp 23–50, 89–103). Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal

  • Pedroso-Ubach MC (1994) Somatic embryogenesis inCamellia japonica L.; a search for markers. Ph.D. Thesis. Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal

  • Roberts PM, Weaver CD & Oh S-H (1992) Intracellular receptor proteins for calcium signals in plants. In: Gresshoff PM (Ed) Plant Biotechnology and Development: Current Topics in Plant Molecular Biology (pp 129–113). CRC Press Inc., Florida

    Google Scholar 

  • Ross MK & Thorpe TA (1973) Physiological gradients and shoot initiation in tobacco callus cultures. Amer. J. Bot. 60: 788–795

    Google Scholar 

  • Schiavone FM & Cooke TJ (1987) Unusual patterns of somatic embryogenesis in the domesticated carrot: developmental effects of exogenous auxins and auxin transport inhibitors. Cell Differ. 21: 53–62

    Google Scholar 

  • Schneider T, Dinkins R, Robinson K, Shellhammer J & Meinke DW (1989) An embryo-lethal mutant ofArabidopsis thaliana is a biotin auxotroph. Dev. Biol. 131: 161–167

    Google Scholar 

  • Sossountzov L, Ruiz-Avila L, Vignols F, Jolliot A, Arondel V, Tchang F, Grosbois M, Guerbette F, Miginiac E, Delseny M, Puigdomenèch P & Kader J-C (1991) Spatial and temporal expression of a maize lipid transfer protein gene. Plant Cell 3: 923–933

    Google Scholar 

  • Sterk P, Booij H, Schellekens GA & De Vries SC (1991) Cell-specific expression of the carrot EP2 lipid transfer protein gene. Plant Cell 3: 907–921

    Google Scholar 

  • Steward FC, Mapes MO & Mears K (1958) Growth and organized development of cultured cells. II. Organization in cultures grown from freely suspended cells. Am. J. Bot. 45: 705–708

    Google Scholar 

  • Sung ZR & Okimoto R (1981) Embryogenic proteins in somatic embryos of carrot. Proc. Natl. Acad. Sci. USA 78: 3683–3687

    Google Scholar 

  • Thomas TL (1993) Gene expression during plant embryogenesis and germination: an overview. Plant Cell 5: 1401–1410

    Google Scholar 

  • Thorpe TA (1980) Organogenesisin vitro: structural, physiological and biochemical aspects. Int. Rev. Cytol. Suppl. 11A: 71–111

  • Timmers ACJ, De Vries SC & Schel JHH (1989) Distribution of membrane bound calcium and activated calmodulin during somatic embryogenesis of carrot (Daucus carota L.). Protoplasma 153: 24–29

    Google Scholar 

  • Trachtenberg S & Mayer AM (1982) Mucilage cells, calcium oxalate crystals and soluble calcium inOpuntia ficus-indica. Ann. Bot. 50: 549–557

    Google Scholar 

  • Tran Thanh Van K & Gendy CA (1993) Markers of plant morphogenesis. In: Roubelakis-Angelakis KA, Tran Thanh Van K (Eds) Morphogenesis in Plants, Molecular Approaches, NATO ASI Series, Series A, Vol 253 (pp 39–54). Plenum Press, New York

    Google Scholar 

  • Ulrich TH, Wurtele ES & Nikolau BJ (1990) Sequence of EMB-1, an mRNA accumulating specifically in embryos of carrot. Nucl. Acids Res. 18: 2826

    Google Scholar 

  • Van Engelen FA & De Vries SC (1992) Extracellular proteins in plant embryogenesis. Trends Genet. 8: 66–70

    Google Scholar 

  • Van Engelen FA & De Vries SC (1993) Secreted proteins in plant cell cultures. In: Roubelakis-Angelakis KA, Tran Thanh Van K (Eds) Morphogenesis in Plants, Molecular Approaches, NATO ASI Series, Series A, Vol 253 (pp 181–200). Plenum Press, New York

    Google Scholar 

  • Vieitez AM & Barciela J (1990) Somatic embryogenesis and plant regeneration from embryonic tissues ofCamellia japonica L.. Plant Cell Tissue and Organ Cult. 21: 267–274

    Google Scholar 

  • Vieitez FJ, San-Jose MC, Ballester A & Vieitez AM (1990) Somatic embryogenesis in cultured immature zygotic embryos in chestnut. J. Plant Physiol. 136: 253–256

    Google Scholar 

  • Vivekananda J, Drew MC & Thomas TL (1992) Hormonal and environmental regulation of the carrot lea-class gene Dc3. Plant Physiol. 100: 576–581

    Google Scholar 

  • Wick SM & Hepler PK (1980) Localisation of Ca2+-containing antimonate precipitates during mitosis. J. Cell Biol. 86: 500–513

    Google Scholar 

  • Wilde HD, Nelson WS, Booij H, de Vries SC & Thomas TH (1988) Gene expression programs in embryogenic and nonembryogenic carrot cultures. Planta 176: 205–211

    Google Scholar 

  • Williamson JR, Raghuraman MK & Cech TR (1989) Cation binding to DNA. Cell 59: 891

    Google Scholar 

  • Wurtele ES, Wang H, Durgerian S, Nikolau BJ & Ulrich TH (1993) Characterization of a gene that is expressed early in somatic embryogenesis ofDaucus carota. Plant Physiol. 102: 303–312

    Google Scholar 

  • Zimmerman JL (1993) Somatic embryogenesis: a model for early development in higher plants. Plant Cell 5: 1411–1423

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pedroso, M.C., Pais, M.S. Factors controlling somatic embryogenesis. Plant Cell Tiss Organ Cult 43, 147–154 (1995). https://doi.org/10.1007/BF00052170

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00052170

Key words

Navigation