Skip to main content
Log in

The Formation of a Small-Scale Filament After Flux Emergence on the Quiet Sun

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

We present observations of the formation process of a small-scale filament on the quiet Sun during 5 – 6 February 2016 and investigate its formation cause. Initially, a small dipole emerged, and its associated arch filament system was found to reconnect with overlying coronal fields accompanied by numerous extreme ultraviolet bright points. When the bright points faded, many elongated dark threads formed and bridged the positive magnetic element of the dipole and the external negative network fields. Interestingly, an anticlockwise photospheric rotational motion (PRM) set in within the positive endpoint region of the newborn dark threads following the flux emergence and lasted for more than 10 hours. Under the drive of the PRM, these dispersive dark threads gradually aligned along the north-south direction and finally coalesced into an inverse S-shaped filament. Consistent with the dextral chirality of the filament, magnetic helicity calculations show that an amount of negative helicity was persistently injected from the rotational positive magnetic element and accumulated during the formation of the filament. These observations suggest that twisted emerging fields may lead to the formation of the filament via reconnection with pre-existing fields and release of its inner magnetic twist. The persistent PRM might trace a covert twist relaxation from below the photosphere to the low corona.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  • Alissandrakis, C.E.: 1981, On the computation of constant alpha force-free magnetic field. Astron. Astrophys. 100, 197. ADS .

    Google Scholar 

  • Archontis, V., Török, T.: 2008, Eruption of magnetic flux ropes during flux emergence. Astron. Astrophys. 492, L35. DOI . ADS .

    Article  Google Scholar 

  • Aulanier, G., DeVore, C.R., Antiochos, S.K.: 2002, Prominence magnetic dips in three-dimensional sheared arcades. Astrophys. J. Lett. 567, L97. DOI . ADS .

    Article  Google Scholar 

  • Berger, M.A., Field, G.B.: 1984, The topological properties of magnetic helicity. J. Fluid Mech. 147, 133. DOI . ADS .

    Article  MathSciNet  Google Scholar 

  • Bi, Y., Jiang, Y., Yang, J., Xiang, Y., Cai, Y., Liu, W.: 2015, Partial eruption of a filament with twisting non-uniform fields. Astrophys. J. 805, 48. DOI . ADS .

    Article  Google Scholar 

  • Borrero, J.M., Tomczyk, S., Kubo, M., Socas-Navarro, H., Schou, J., Couvidat, S., Bogart, R.: 2011, VFISV: Very Fast Inversion of the Stokes Vector for the Helioseismic and Magnetic Imager. Solar Phys. 273, 267. DOI . ADS .

    Article  Google Scholar 

  • Bi, Y., Jiang, Y., Yang, J., Hong, J., Li, H., Yang, B., Xu, Z.: 2016, Observation of a reversal of rotation in a sunspot during a solar flare. Nat. Commun. 7, 13798. DOI . ADS .

    Article  Google Scholar 

  • Brandt, P.N., Scharmert, G.B., Ferguson, S., Shine, R.A., Tarbell, T.D., Title, A.M.: 1988, Vortex flow in the solar photosphere. Nature 335, 238. DOI . ADS .

    Article  Google Scholar 

  • Bruzek, A.: 1967, On arch-filament systems in spotgroups. Solar Phys. 2, 451. DOI . ADS .

    Article  Google Scholar 

  • Chen, P.F., Harra, L.K., Fang, C.: 2014, Imaging and spectroscopic observations of a filament channel and the implications for the nature of counter-streamings. Astrophys. J. 784, 50. DOI . ADS .

    Article  Google Scholar 

  • Dalmasse, K., Pariat, E., Valori, G., Démoulin, P., Green, L.M.: 2013, First observational application of a connectivity-based helicity flux density. Astron. Astrophys. 555, L6. DOI . ADS .

    Article  Google Scholar 

  • Dalmasse, K., Pariat, E., Démoulin, P., Aulanier, G.: 2014, Photospheric injection of magnetic helicity: Connectivity-based flux density method. Solar Phys. 289, 107. DOI . ADS .

    Article  Google Scholar 

  • Démoulin, P., Berger, M.A.: 2003, Magnetic energy and helicity fluxes at the photospheric level. Solar Phys. 215, 203. DOI . ADS .

    Article  Google Scholar 

  • Fan, Y.: 2001, The emergence of a twisted \(\Omega\)-tube into the solar atmosphere. Astrophys. J. Lett. 554, L111. DOI . ADS .

    Article  Google Scholar 

  • Fan, Y.: 2009, The emergence of a twisted flux tube into the solar atmosphere: Sunspot rotations and the formation of a coronal flux rope. Astrophys. J. 697, 1529. DOI . ADS .

    Article  Google Scholar 

  • Gaizauskas, V., Zirker, J.B., Sweetland, C., Kovacs, A.: 1997, Formation of a solar filament channel. Astrophys. J. 479, 448. DOI . ADS .

    Article  Google Scholar 

  • Gary, G.A.: 1989, Linear force-free magnetic fields for solar extrapolation and interpretation. Astrophys. J. Suppl. 69, 323. DOI . ADS .

    Article  Google Scholar 

  • Guo, Y., Schmieder, B., Démoulin, P., Wiegelmann, T., Aulanier, G., Török, T., Bommier, V.: 2010, Coexisting flux rope and dipped arcade sections along one solar filament. Astrophys. J. 714, 343. DOI . ADS .

    Article  Google Scholar 

  • Harvey, J.W., Bolding, J., Clark, R., Hauth, D., Hill, F., Kroll, R., et al.: 2011, Full-disk solar H-alpha images from GONG. In: AAS/Solar Physics Division Abstracts #42, Bulletin of the American Astronomical Society 43, 17.45. ADS .

    Google Scholar 

  • Hoeksema, J.T., Liu, Y., Hayashi, K., Sun, X., Schou, J., Couvidat, S., et al.: 2014, The Helioseismic and Magnetic Imager (HMI) vector magnetic field pipeline: Overview and performance. Solar Phys. 289, 3483. DOI . ADS .

    Article  Google Scholar 

  • Hong, J., Jiang, Y., Zheng, R., Yang, J., Bi, Y., Yang, B.: 2011, A micro coronal mass ejection associated blowout extreme-ultraviolet jet. Astrophys. J. Lett. 738, L20. DOI . ADS .

    Article  Google Scholar 

  • Hong, J., Jiang, Y., Yang, J., Li, H., Xu, Z.: 2017, Minifilament eruption as the source of a blowout jet, C-class flare, and type-III radio burst. Astrophys. J. 835, 35. DOI . ADS .

    Article  Google Scholar 

  • Jiang, Y., Ji, H., Wang, H., Chen, H.: 2003, \(\mbox{H}\alpha\) dimmings associated with the X1.6 flare and halo coronal mass ejection on 2001 October 19. Astrophys. J. Lett. 597, L161. DOI . ADS .

    Article  Google Scholar 

  • Jiang, Y., Zheng, R., Yang, J., Hong, J., Yi, B., Yang, D.: 2012, Rapid sunspot rotation associated with the X2.2 flare on 2011 February 15. Astrophys. J. 744, 50. DOI . ADS .

    Article  Google Scholar 

  • Kaneko, T., Yokoyama, T.: 2017, Reconnection–condensation model for solar prominence formation. Astrophys. J. 845, 12. DOI . ADS .

    Article  Google Scholar 

  • Karpen, J.T., Tanner, S.E.M., Antiochos, S.K., DeVore, C.R.: 2005, Prominence formation by thermal nonequilibrium in the sheared-arcade model. Astrophys. J. 635, 1319. DOI . ADS .

    Article  Google Scholar 

  • Lemen, J.R., Title, A.M., Akin, D.J., Boerner, P.F., Chou, C., Drake, J.F., et al.: 2012, The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Solar Phys. 275, 17. DOI . ADS .

    Article  Google Scholar 

  • Li, T., Zhang, J.: 2016, Subarcsecond bright points and quasi-periodic upflows below a quiescent filament observed by IRIS. Astron. Astrophys. 589, A114. DOI . ADS .

    Article  Google Scholar 

  • Li, H., Jiang, Y., Yang, J., Yang, B., Xu, Z., Hong, J., Bi, Y.: 2017, Rotating magnetic structures associated with a quasi-circular ribbon flare. Astrophys. J. 836, 235. DOI . ADS .

    Article  Google Scholar 

  • Lites, B.W., Low, B.C.: 1997, Flux emergence and prominences: A new scenario for 3-dimensional field geometry based on observations with the advanced Stokes polarimeter. Solar Phys. 174, 91. DOI . ADS .

    Article  Google Scholar 

  • Liu, Y., Kurokawa, H., Shibata, K.: 2005, Production of filaments by surges. Astrophys. J. Lett. 631, L93. DOI . ADS .

    Article  Google Scholar 

  • Liu, Y., Schuck, P.W.: 2012, Magnetic energy and helicity in two emerging active regions in the Sun. Astrophys. J. 761, 105. DOI . ADS .

    Article  Google Scholar 

  • Liu, Y., Hoeksema, J.T., Bobra, M., Hayashi, K., Schuck, P.W., Sun, X.: 2014, Magnetic helicity in emerging solar active regions. Astrophys. J. 785, 13. DOI . ADS .

    Article  Google Scholar 

  • Low, B.C., Hundhausen, J.R.: 1995, Magnetostatic structures of the solar corona. 2: The magnetic topology of quiescent prominences. Astrophys. J. 443, 818. DOI . ADS .

    Article  Google Scholar 

  • Mackay, D.H., Karpen, J.T., Ballester, J.L., Schmieder, B., Aulanier, G.: 2010, Physics of solar prominences: II – magnetic structure and dynamics. Space Sci. Rev. 151, 333. DOI . ADS .

    Article  Google Scholar 

  • Magara, T.: 2006, Dynamic and topological features of photospheric and coronal activities produced by flux emergence in the Sun. Astrophys. J. 653, 1499. DOI . ADS .

    Article  Google Scholar 

  • Manchester, W. IV, Gombosi, T., DeZeeuw, D., Fan, Y.: 2004, Eruption of a buoyantly emerging magnetic flux rope. Astrophys. J. 610, 588. DOI . ADS .

    Article  Google Scholar 

  • Martens, P.C., Zwaan, C.: 2001, Origin and evolution of filament-prominence systems. Astrophys. J. 558, 872. DOI . ADS .

    Article  Google Scholar 

  • Martin, S.F.: 1998, Conditions for the formation and maintenance of filaments (invited review). Solar Phys. 182, 107. DOI . ADS .

    Article  Google Scholar 

  • Metcalf, T.R., Leka, K.D., Barnes, G., Lites, B.W., Georgoulis, M.K., Pevtsov, A.A., et al.: 2006, An overview of existing algorithms for resolving the \(180^{\circ}\) ambiguity in vector magnetic fields: Quantitative tests with synthetic 987 data. Solar Phys. 237, 267. DOI . ADS .

    Article  Google Scholar 

  • Okamoto, T.J., Tsuneta, S., Lites, B.W., Kubo, M., Yokoyama, T., Berger, T.E., et al.: 2009, Prominence formation associated with an emerging helical flux rope. Astrophys. J. 697, 913. DOI . ADS .

    Article  Google Scholar 

  • Ouyang, Y., Zhou, Y.H., Chen, P.F., Fang, C.: 2017, Chirality and magnetic configurations of solar filaments. Astrophys. J. 835, 94. DOI . ADS .

    Article  Google Scholar 

  • Panesar, N.K., Sterling, A.C., Moore, R.L.: 2017, Magnetic flux cancellation as the origin of solar quiet-region pre-jet minifilaments. Astrophys. J. 844, 131. DOI . ADS .

    Article  Google Scholar 

  • Pariat, E., Démoulin, P., Berger, M.A.: 2005, Photospheric flux density of magnetic helicity. Astron. Astrophys. 439, 1191. DOI . ADS .

    Article  Google Scholar 

  • Ruan, G., Chen, Y., Wang, S., Zhang, H., Li, G., Jing, J., et al.: 2014, A solar eruption driven by rapid sunspot rotation. Astrophys. J. 784, 165. DOI . ADS .

    Article  Google Scholar 

  • Rust, D.M., Kumar, A.: 1994, Helical magnetic fields in filaments. Solar Phys. 155, 69. DOI . ADS .

    Article  Google Scholar 

  • Schou, J., Scherrer, P.H., Bush, R.I., Wachter, R., Couvidat, S., Rabello-Soares, M.C., et al.: 2012, Design and ground calibration of the Helioseismic and Magnetic Imager (HMI) instrument on the Solar Dynamics Observatory (SDO). Solar Phys. 275, 229. DOI . ADS .

    Article  Google Scholar 

  • Schuck, P.W.: 2006, Tracking magnetic footpoints with the magnetic induction equation. Astrophys. J. 646, 1358. DOI . ADS .

    Article  Google Scholar 

  • Schuck, P.W.: 2008, Tracking vector magnetograms with the magnetic induction equation. Astrophys. J. 683, 1134. DOI . ADS .

    Article  Google Scholar 

  • Shen, Y.-D., Liu, Y., Liu, R.: 2011, A time series of filament eruptions observed by three eyes from space: From failed to successful eruptions. Res. Astron. Astrophys. 11, 594. DOI . ADS .

    Article  Google Scholar 

  • Shen, Y., Liu, Y., Su, J., Deng, Y.: 2012, On a coronal blowout jet: The first observation of a simultaneously produced bubble-like CME and a jet-like CME in a solar event. Astrophys. J. 745, 164. DOI . ADS .

    Article  Google Scholar 

  • Shen, Y., Liu, Y.D., Su, J., Qu, Z., Tian, Z.: 2017, On a solar blowout jet: Driving mechanism and the formation of cool and hot components. Astrophys. J. 851, 67. DOI . ADS .

    Article  Google Scholar 

  • Su, Y., Wang, T., Veronig, A., Temmer, M., Gan, W.: 2012, Solar magnetized “tornadoes:” Relation to filaments. Astrophys. J. Lett. 756, L41. DOI . ADS .

    Article  Google Scholar 

  • Sun, X., Hoeksema, J.T., Liu, Y., Wiegelmann, T., Hayashi, K., Chen, Q., Thalmann, J.: 2012, Evolution of magnetic field and energy in a major eruptive active region based on SDO/HMI observation. Astrophys. J. 748, 77. DOI . ADS .

    Article  Google Scholar 

  • van Ballegooijen, A.A., Martens, P.C.H.: 1989, Formation and eruption of solar prominences. Astrophys. J. 343, 971. DOI . ADS .

    Article  Google Scholar 

  • Vargas Domínguez, S., MacTaggart, D., Green, L., van Driel-Gesztelyi, L., Hood, A.W.: 2012, On signatures of twisted magnetic flux tube emergence. Solar Phys. 278, 33. DOI . ADS .

    Article  Google Scholar 

  • Vemareddy, P., Cheng, X., Ravindra, B.: 2016, Sunspot rotation as a driver of major solar eruptions in the NOAA Active Region 12158. Astrophys. J. 829, 24. DOI . ADS .

    Article  Google Scholar 

  • Vemareddy, P., Démoulin, P.: 2017, Successive injection of opposite magnetic helicity in solar Active Region NOAA 11928. Astron. Astrophys. 597, A104. DOI . ADS .

    Article  Google Scholar 

  • Wang, Y.-M.: 1999, The jetlike nature of He ii \(\lambda304\) prominences. Astrophys. J. Lett. 520, L71. DOI . ADS .

    Article  Google Scholar 

  • Wang, Y.-M., Muglach, K.: 2007, On the formation of filament channels. Astrophys. J. 666, 1284. DOI . ADS .

    Article  Google Scholar 

  • Wang, J., Yan, X., Qu, Z., Xue, Z., Yang, L.: 2017, Formation and eruption process of a filament in Active Region NOAA 12241. Astrophys. J. 839, 128. DOI . ADS .

    Article  Google Scholar 

  • Wedemeyer-Böhm, S., Scullion, E., Steiner, O., Rouppe van der Voort, L., de La Cruz Rodriguez, J., Fedun, V., Erdélyi, R.: 2012, Magnetic tornadoes as energy channels into the solar corona. Nature 486, 505. DOI . ADS .

    Article  Google Scholar 

  • Xia, C., Chen, P.F., Keppens, R.: 2012, Simulations of prominence formation in the magnetized solar corona by chromospheric heating. Astrophys. J. Lett. 748, L26. DOI . ADS .

    Article  Google Scholar 

  • Xue, Z., Yan, X., Yang, L., Wang, J., Zhao, L.: 2017, Observing formation of flux rope by tether-cutting reconnection in the Sun. Astrophys. J. Lett. 840, L23. DOI . ADS .

    Article  Google Scholar 

  • Yan, X.L., Xue, Z.K., Pan, G.M., Wang, J.C., Xiang, Y.Y., Kong, D.F., et al.: 2015, The formation and magnetic structures of active-region filaments observed by NVST, SDO, and Hinode. Astrophys. J. Suppl. 219, 17. DOI . ADS .

    Article  Google Scholar 

  • Yan, X.L., Priest, E.R., Guo, Q.L., Xue, Z.K., Wang, J.C., Yang, L.H.: 2016, The formation of an inverse S-shaped active-region filament driven by sunspot motion and magnetic reconnection. Astrophys. J. 832, 23. DOI . ADS .

    Article  Google Scholar 

  • Yan, X.L., Jiang, C.W., Xue, Z.K., Wang, J.C., Priest, E.R., Yang, L.H., et al.: 2017, The eruption of a small-scale emerging flux rope as the driver of an M-class flare and of a coronal mass ejection. Astrophys. J. 845, 18. DOI . ADS .

    Article  Google Scholar 

  • Yang, S., Zhang, J.: 2014, Properties of solar ephemeral regions at the emergence stage. Astrophys. J. 781, 7. DOI . ADS .

    Article  Google Scholar 

  • Yang, J., Jiang, Y., Bi, Y., Li, H., Hong, J., Yang, D., et al.: 2012, An over-and-out halo coronal mass ejection driven by the full eruption of a kinked filament. Astrophys. J. 749, 12. DOI . ADS .

    Article  Google Scholar 

  • Yang, B., Jiang, Y., Yang, J., Hong, J., Xu, Z.: 2015, The formation and eruption of a small circular filament driven by rotating magnetic structures in the quiet Sun. Astrophys. J. 803, 86. DOI . ADS .

    Article  Google Scholar 

  • Yang, B., Jiang, Y., Yang, J., Bi, Y., Li, H.: 2016a, Observations of the growth of an active region filament. Astrophys. J. 830, 16. DOI . ADS .

    Article  Google Scholar 

  • Yang, B., Jiang, Y., Yang, J., Yu, S., Xu, Z.: 2016b, The rapid formation of a filament caused by magnetic reconnection between two sets of dark threadlike structures. Astrophys. J. 816, 41. DOI . ADS .

    Article  Google Scholar 

  • Zhang, J., Liu, Y.: 2011, Ubiquitous rotating network magnetic fields and extreme-ultraviolet cyclones in the quiet Sun. Astrophys. J. Lett. 741, L7. DOI . ADS .

    Article  Google Scholar 

  • Zhang, J., Wang, J., Wang, H., Zirin, H.: 1998, The motion patterns of intranetwork magnetic elements. Astron. Astrophys. 335, 341. ADS .

    Google Scholar 

  • Zhou, G., Wang, J., Zhang, J.: 2016, An observational study of the recurring formation and dissipation of a dynamic filament. Solar Phys. 291, 2373. DOI . ADS .

    Article  Google Scholar 

  • Zou, P., Fang, C., Chen, P.F., Yang, K., Hao, Q., Cao, W.: 2016, Material supply and magnetic configuration of an active region filament. Astrophys. J. 831, 123. DOI . ADS .

    Article  Google Scholar 

Download references

Acknowledgements

We thank the anonymous referee for their critical comments that helped improve the paper. We also thank Jun Zhang for constructive comments, Leping Li and Shuhong Yang for useful discussions. The data used here are courtesy of the NASA/SDO, the HMI, and the AIA science teams. This work is supported by the Natural Science Foundation of China under grants 11703084, 11633008, 11333007, 11573012, and 11503081, and by the CAS programs “Light of West China” and “QYZDJ-SSW-SLH012”, and by the grant associated with the Project of the Group for Innovation of Yunnan Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hechao Chen.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflict of interest.

Electronic Supplementary Material

Below are the links to the electronic supplementary material.

(MOV 10.6 MB)

(MOV 8.7 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Yang, J., Yang, B. et al. The Formation of a Small-Scale Filament After Flux Emergence on the Quiet Sun. Sol Phys 293, 93 (2018). https://doi.org/10.1007/s11207-018-1311-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-018-1311-8

Keywords

Navigation