Skip to main content

Advertisement

Log in

Understanding the Nature of Science Through a Critical and Reflective Analysis of the Controversy Between Pasteur and Liebig on Fermentation

  • Article
  • Published:
Science & Education Aims and scope Submit manuscript

Abstract

This article presents a qualitative study, descriptive-interpretive in profile, of the effectiveness in learning about the nature of science (NOS) of an activity relating to the historical controversy between Pasteur and Liebig on fermentation. The activity was implemented during a course for pre-service secondary science teachers (PSSTs) specializing in physics and chemistry. The approach was explicit and reflective. Three research questions were posed: (1) What conceptions of NOS do the PSSTs show after a first reflective reading of the historical controversy?, (2) What role is played by the PSSTs’ whole class critical discussion of their first reflections on the aspects of NOS dealt with in the controversy?, and (3) What changes are there in the PSSTs’ conceptions of NOS after concluding the activity? The data for analysis was extracted from the PSSTs’ group reports submitted at the end of the activity and the audio-recorded information from the whole class discussion. A rubric was prepared to assess this data by a process of inter-rater analysis. The results showed overall improvement in understanding the aspects of NOS involved, with there being a significant evolution in some cases (e.g., conception of scientific theory) and moderate in others (e.g., differences in scientific interpretations of the same phenomenon). This reveals that the activity has an educational utility for the education of PSSTs in NOS issues. The article concludes with an indication of some educational implications of the experience.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. The percentage is calculated on 64, the maximum number of responses of the eight groups to the eight questions.

References

  • Abd-El-Khalick, F. (2012). Nature of science in science education: toward a coherent framework for synergistic research and development. In B. J. Fraser, K. Tobin, & C. J. McRobbie (Eds.), Second international handbook of science education (pp. 1041–1060). Dordrecht: Springer.

  • Abd-El-Khalick, F. (2013). Teaching with and about nature of science, and science teacher knowledge domains. Science & Education, 22(9), 2087–2107.

    Article  Google Scholar 

  • Abd-El-Khalick, F., & Lederman, N. G. (2000). The influence of history of science course on students’ views of nature of science. Journal of Research in Science Teaching, 37(10), 1057–1095.

    Article  Google Scholar 

  • Acevedo, J. A. (1998). Análisis de algunos criterios para diferenciar entre ciencia y tecnología. Enseñanza de las Ciencias, 16(3), 409–420.

    Google Scholar 

  • Acevedo, J. A. (2006). Modelos de relaciones entre ciencia y tecnología: Un análisis social e histórico. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 3(2), 198–219.

    Google Scholar 

  • Acevedo, J. A. (2009). Enfoques explícitos versus implícitos en la enseñanza de la naturaleza de la ciencia. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 6(3), 355–386.

    Google Scholar 

  • Acevedo, J. A., & García-Carmona, A. (2016a). “Algo antiguo, algo nuevo, algo prestado”. Tendencias sobre la naturaleza de la ciencia en la educación científica. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 13(1), 3–19.

    Google Scholar 

  • Acevedo, J. A., & García-Carmona, A. (2016b). Uso de la historia de la ciencia para comprender aspectos de la naturaleza de la ciencia. Fundamentación de una propuesta basada en la controversia Pasteur versus Liebig sobre la fermentación. Revista Iberoamericana de Ciencia, Tecnología y Sociedad, 11(33), 203–226.

    Google Scholar 

  • Acevedo, J. A., García-Carmona, A., & Aragón, M. M. (2016). Un caso de historia de la ciencia para aprender naturaleza de la ciencia: Semmelweis y la fiebre puerperal. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 13(2), 408–422.

    Google Scholar 

  • Adúriz-Bravo, A., & Izquierdo-Aymerich, M. (2009). A research-informed instructional unit to teach the nature of science to pre-service science teachers. Science & Education, 18(9), 1177–1192.

    Article  Google Scholar 

  • Aikenhead, G. S. (2003). STS education: a rose by any other name. In R. Cross (Ed.), A vision for science education: responding to the work of Peter J. Fensham (pp. 59–75). New York: Routledge Falmer.

    Google Scholar 

  • Allchin, D. (2003). Scientific myth-conceptions. Science Education, 87(3), 329–351.

    Article  Google Scholar 

  • Allchin, D. (2004a). Should the sociology of science be rated X? Science Education, 88(6), 915–933.

    Article  Google Scholar 

  • Allchin, D. (2004b). Pseudohistory and pseudoscience. Science & Education, 13(3), 179–195.

    Article  Google Scholar 

  • Allchin, D. (2011). Evaluating knowledge of the nature of (whole) science. Science Education, 95(3), 518–542.

    Article  Google Scholar 

  • Allchin, D. (2012). Teaching the nature of science through scientific errors. Science Education, 96(5), 904–926.

    Article  Google Scholar 

  • Allchin, D. (2014). From science studies to scientific literacy: a view from the classroom. Science & Education, 23(9), 1911–1932.

    Article  Google Scholar 

  • Banet, E. (2010). Finalidades de la educación científica en educación secundaria: Aportaciones de la investigación educativa y opinión de los profesores. Enseñanza de las Ciencias, 28(2), 199–214.

    Google Scholar 

  • Barnes, B. (1982). T.S. Kuhn and social science. London: MacMillan Press.

    Book  Google Scholar 

  • Bennàssar, A., Vázquez, A., Manassero, M. A., & García-Carmona, A. (Coords.) (2010). Ciencia, tecnología y sociedad en Iberoamérica: Una evaluación de la comprensión de la naturaleza de ciencia y tecnología. Madrid: Organización de Estados Iberoamericanos para la Educación, la Ciencia y la Cultura (OEI).

  • Bloor, D. (1971). Knowledge and social imagery. London: Routledge & Kegan Paul.

    Google Scholar 

  • Bybee, R. W. (1997). Achieving scientific literacy: from purposes to practices. Portsmouth, NH: Heinemann.

    Google Scholar 

  • Clough, M. P. (2011a). The story behind the science: bringing science and scientists to life in post-secondary science education. Science & Education, 20(7–8), 701–717.

    Article  Google Scholar 

  • Clough, M. P. (2011b). Teaching and assessing the nature of science. The Science Teacher, 78(6), 56–60.

    Google Scholar 

  • COSCE [Confederación de Sociedades Científicas de España]. (2011). Informe Enciende: Enseñanza de las ciencias en la didáctica escolar para edades tempranas en España. Madrid: COSCE.

    Google Scholar 

  • Dagher, Z. R., & Erduran, S. (2016). Reconceptualizing the nature of science for science education. Why does it matter? Science & Education, 25(1–2), 147–164.

    Article  Google Scholar 

  • Driver, R., Leach, J., Millar, R., & Scott, P. (1996). Young people’s images of science. Buckingham: Open University Press.

    Google Scholar 

  • Dubos, R. J. (1950). Louis Pasteur, free lance of science. Boston, MA: Little, Brown & Company.

    Google Scholar 

  • Echeverría, J. (1999). Introducción a la metodología de la ciencia. La filosofía de la ciencia en el siglo XX. Barcelona: Cátedra.

    Google Scholar 

  • Echeverría, J. (2002). Ciencia y valores. Barcelona: Destino.

    Google Scholar 

  • Eurydice. (2011). Science education in Europe: national policies, practices and research. Brussels: EACEA P9 Eurydice Retrieved from: http://eacea.ec.europa.eu/education/eurydice.

    Google Scholar 

  • Forato, T. C. M., Martins, R. A., & Pietrocola, M. A. (2011). Historiografia e natureza da ciência na sala de aula. Caderno Brasileiro de Ensino de Física, 28(1), 27–59.

    Article  Google Scholar 

  • García-Carmona, A. (2012a). “¿Qué he comprendido? ¿qué sigo sin entender?”. Promoviendo la auto-reflexión en clase de Ciencias. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 9(2), 231–240.

    Google Scholar 

  • García-Carmona, A. (2012b). Cómo enseñar naturaleza de la ciencia (NDC) a través de experiencias escolares de investigación científica. Alambique, 72, 55–63.

    Google Scholar 

  • García-Carmona, A., & Acevedo, J. A. (2016a). Learning about the nature of science using newspaper articles with scientific content: a study in initial primary teacher education. Science & Education, 25(5–6), 523–546.

    Article  Google Scholar 

  • García-Carmona, A., & Acevedo, J. A. (2016b). Concepciones de estudiantes de profesorado de Educación Primaria sobre la naturaleza de la ciencia: Una evaluación diagnóstica a partir de reflexiones en grupo. Revista Mexicana de Investigación Educativa, 21(69), 583–610.

    Google Scholar 

  • García-Carmona, A., Vázquez, A., & Manassero, M. A. (2011). Estado actual y perspectivas de la enseñanza de la Naturaleza de la Ciencia: Una revisión de las creencias y obstáculos del profesorado. Enseñanza de las Ciencias, 29(3), 403–412.

    Google Scholar 

  • García-Carmona, A., Vázquez, A., & Manassero, M. A. (2012). Comprensión de los estudiantes sobre naturaleza de la ciencia: Análisis del estado actual de la cuestión y perspectivas. Enseñanza de las Ciencias, 30(1), 23–34.

    Google Scholar 

  • Geison, G. (1995). The private science of Louis Pasteur. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Golabek, C., & Cooper, L. A. (2011). Trainee teachers’ perceptions of the nature of science and implications for pre-service teacher training in England. Research in Secondary Teacher Education, 1(2), 9–13.

    Google Scholar 

  • Hanson, N. R. (1958). Patterns of discovery. An inquiry into the conceptual foundations of science. Cambridge, MA: Cambridge University Press.

    Google Scholar 

  • Hein, G. E. (1961). The Liebig-Pasteur controversy: vitality without vitalism. Journal of Chemical Education, 38(12), 614–619.

    Article  Google Scholar 

  • Hempel, C. G. (1966). Philosophy of natural science. Oxford: Prentice-Hall.

    Google Scholar 

  • Hodson, D. (2014). Learning science, learning about science, doing science: different goals demand different learning methods. International Journal of Science Education, 36(15), 2534–2553.

    Article  Google Scholar 

  • Hull, L. W. H. (1959). History and philosophy of science. New York: Longmans, Green.

    Google Scholar 

  • Irwin, A. R. (2000). Historical case studies: teaching the nature of science in context. Science Education, 84(1), 5–26.

    Article  Google Scholar 

  • Irzik, G., & Nola, R. (2014). New directions for nature of science research. In M. Matthews (Ed.), International handbook of research in history, philosophy and science teaching (pp. 999–1021). Dordrecht: Springer.

    Google Scholar 

  • Kampourakis, K. (2016). The “general aspects” conceptualization as a pragmatic and effective means to introducing students to nature of science. Journal of Research in Science Teaching, 53(5), 667–682.

    Article  Google Scholar 

  • Kampourakis, K., & Gripiotis, C. (2015). Darwinism in context: an interdisciplinary, highly contextualized course on nature of science. Perspectives in Science, 5, 25–35.

    Article  Google Scholar 

  • Kawalkar, A., & Vijapurkar, J. (2013). Scaffolding science talk: the role of teachers’ questions in the inquiry classroom. International Journal of Science Education, 35(12), 2004–2027.

    Article  Google Scholar 

  • Kuhn, T. S. (1962). The structure of scientific revolutions. Chicago, IL: University of Chicago Press.

    Google Scholar 

  • Lakatos, I. (1978). The methodology of scientific research programmes. Philosophical papers. Volume 1. Cambridge, MA: Cambridge University Press.

    Book  Google Scholar 

  • Lederman, N. G., Abd-El-Khalick, F., Bell, R. L., & Schwartz, R. S. (2002). Views of nature of science questionnaire: towards valid and meaningful assessment of learners’ conceptions of nature of science. Journal of Research in Science Teaching, 39(6), 497–521.

    Article  Google Scholar 

  • Lederman, N. G., Bartos, S. A., & Lederman, J. S. (2014). The development, use, and interpretation of nature of science assessments. In M. Matthews (Ed.), International handbook of research in history, philosophy and science teaching (pp. 971–997). Dordrecht: Springer.

    Google Scholar 

  • Longino, H. E. (1990). Science as social knowledge: values and objectivity in scientific inquiry. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Martins, A. F. P. (2015). Natureza da Ciência no ensino de ciências: Uma proposta baseada em “temas” e “questões”. Caderno Brasileiro de Ensino de Física, 32(3), 703–737.

    Article  Google Scholar 

  • Matthews, M. R. (2012). Changing the focus: from nature of science (NOS) to features of science (FOS). In M. S. Khine (Ed.), Advances in nature of science research (pp. 3–26). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Matthews, M. R. (2015). Science teaching: the contribution of history and philosophy of science (20th anniversary revised and expanded edition). New York: Routledge.

    Google Scholar 

  • McComas, W. F. (1998). The principal elements of the nature of science: dispelling the myths. In W. F. McComas (Ed.), The nature of science in science education. Rationales and strategies (pp. 53–70). Dordrecht: Kluwer.

    Google Scholar 

  • McComas, W. F. (2008). Seeking historical examples to illustrate key aspects of the nature of science. Science & Education, 17(2–3), 249–263.

    Article  Google Scholar 

  • McComas, W. F., & Kampourakis, K. (2015). Using the history of biology, chemistry, geology, and physics to illustrate general aspects of nature of science. Review of Science, Mathematics and ICT Education, 9(1), 47–76.

    Google Scholar 

  • McMullin, E. (1987). Scientific controversy and its termination. In H. T. Engelhardt Jr. & A. L. Caplan (Eds.), Scientific controversies. Case studies in the resolution and closure of disputes in science and technology (pp. 49–91). New York: Cambridge University Press.

    Chapter  Google Scholar 

  • Monk, M., & Osborne, J. (1997). Placing the history and philosophy of science on the curriculum: a model for the development of pedagogy. Science Education, 81(4), 405–424.

    Article  Google Scholar 

  • NGSS. (2013). The next generation science standards: for states, by states. Washington, DC: National Academy of Sciences.

    Google Scholar 

  • Numbers, R. L., & Kampourakis, K. (Eds.). (2015). Newton’s apple and other myths about science. Cambridge, MA: Harvard University Press.

  • Organisation for Economic Co-operation and Development [OECD]. (2009). PISA 2009. Assessment framework-key competencies in reading, mathematics and science. Paris: OCDE.

    Google Scholar 

  • Osborne, J., Collins, S., Ratcliffe, M., Millar, R., & Duschl, R. (2003). What “ideas-about-science” should be taught in school science? A Delphi study of the expert community. Journal of Research in Science Teaching, 40(7), 692–720.

    Article  Google Scholar 

  • Peirce, C. S. (1955). The scientific attitude and fallibilism. In J. Buchler (Ed.), Philosophical writings of Peirce (pp. 42–59). New York: Dover.

    Google Scholar 

  • Putnam, H. (1981). Reason, truth and history. Cambridge, MA: Cambridge University Press.

    Book  Google Scholar 

  • Putnam, H. (1987). The many face of realism. La Salle: Open Court Publishing Company.

    Google Scholar 

  • Rudge, D. W., & Howe, E. M. (2009). An explicit and reflective approach to the use of history to promote understanding of the nature of science. Science & Education, 18(5), 561–580.

    Article  Google Scholar 

  • Rudge, D. W., Cassidy, D. P., Fulford, J. M., & Howe, E. M. (2014). Changes observed in views of nature of science during a historically based unit. Science & Education, 23(9), 1879–1909.

    Article  Google Scholar 

  • Salmerón, L. (2013). Actividades que promueven la transferencia de los aprendizajes: Una revisión de la literatura. Revista de Educación, No. Extra., 34–53.

  • Seale, C. (1999). The quality of qualitative research. Introducing qualitative methods series. London: Sage.

    Google Scholar 

  • Shamos, M. H. (1995). The myth of scientific literacy. New Brunswick, NJ: Rutgers University Press.

    Google Scholar 

  • Shibley, I. A. (2003). Using newspapers to examine the nature of science. Science & Education, 12(7), 691–702.

    Article  Google Scholar 

  • Thuillier, P. (1988). D’Archimède à Einstein: les faces cachées de l’invention scientifique. Paris: Libraire Arthéme Fayard.

    Google Scholar 

  • Vallverdú, J. (2005). ¿Cómo finalizan las controversias? Un nuevo modelo de análisis: La controvertida historia de la sacarina. Revista Iberoamericana de Ciencia, Tecnología y Sociedad, 2(5), 19–50.

    Google Scholar 

  • Vázquez, A., García-Carmona, A., Manassero, M. A., & Bennàssar, A. (2013). Science teachers’ thinking about the nature of science: a new methodological approach to its assessment. Research in Science Education, 43(2), 781–808.

    Article  Google Scholar 

  • Vesterinen, V.-M., Manassero, M. A., & Vázquez-Alonso, A. (2014). History, philosophy, and sociology of science and science-technology-society traditions in science education: continuities and discontinuities. In M. Matthews (Ed.), International handbook of research in history, philosophy and science teaching (pp. 1895–1925). Dordrecht: Springer.

    Google Scholar 

  • Wahbeh, N., & Abd-El-Khalick, F. (2014). Revisiting the translation of nature of science understandings into instructional practice: teachers’ nature of science pedagogical content knowledge. International Journal of Science Education, 36(3), 425–466.

    Article  Google Scholar 

  • Williams, C. T., & Rudge, D. W. (2016). Emphasizing the history of genetics in an explicit and reflective approach to teaching the nature of science: A pilot study. Science & Education, 25(3–4), 407–427.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio García-Carmona.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest.

Additional information

José Antonio Acevedo-Díaz is Retired from Educational Inspection

Electronic supplementary material

ESM 1

(DOCX 38 kb).

Appendix

Appendix

Table 4 Indicators of the rubric cited in the groups’ initial and final responses to the questions

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García-Carmona, A., Acevedo-Díaz, J.A. Understanding the Nature of Science Through a Critical and Reflective Analysis of the Controversy Between Pasteur and Liebig on Fermentation. Sci & Educ 26, 65–91 (2017). https://doi.org/10.1007/s11191-017-9876-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11191-017-9876-4

Keywords

Navigation