Skip to main content
Log in

First Experimental Studies of the High-Power Relativistic Ka-Band Gyrotron with Beam Compression in the Electron-Optical System

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We develop and study for the first time a high-current Ka-band gyrotron having an electron-optical system with magnetic compression, which ensures the formation of a helical electronc beam with an energy of 500 keV, a current of 2 kA, and a pitch factor of about 1.0. Generation of the radiation with a power of 35–40 MW and a pulse duration of about 5 ns is achieved at the TE−3, 2 and TE−4, 2 modes with frequencies of 30.6 and 35.7 GHz, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. V.Rostov, E.M.Totmeninov, R. V.Tsygankov, et al., IEEE Trans. Electron Dev., 65, No. 7, 3019–3025 (2018). https://doi.org/https://doi.org/10.1109/TED.2018.2833456

    Article  ADS  Google Scholar 

  2. D.Wang, Y.Teng, S. Li, et al., IEEE Trans. Electron Dev., 68, No. 6, 3015–3020 (2021). https://doi.org/https://doi.org/10.1109/TED.2021.3074114

    Article  ADS  Google Scholar 

  3. S. Chen, J. Zhang, J. Zhang, et al., IEEE Electron Dev. Lett., 43, No. 2, 288–291 (2022). https://doi.org/https://doi.org/10.1109/LED.2021.3138591

    Article  ADS  Google Scholar 

  4. J. Zhang, H.Wang, F.Dang, et al., Rev. Sci. Instrum., 91, No. 10, 104701 (2020). https://doi.org/10.1063/5.0012233

  5. S. Li, H.Huang, Z.Duan, et al., IEEE Electron Dev. Lett., 43, No. 1, 131–134 (2022). https://doi.org/10.1109/LED.2021.3130170

  6. A. V.Palitsin, Y. V. Rodin, M. B. Goykhman, et al., IEEE Electron Dev. Lett., 44, No. 2, 317–320 (2023). https://doi.org/https://doi.org/10.1109/LED.2022.3227584

    Article  ADS  Google Scholar 

  7. J.Wang, G.Wang, D.Wang, et al., Sci. Rep., 8, 6978 (2018). https://doi.org/10.1038/s41598-018-25466-w

  8. A.N. Leontyev, E.B.Abubakirov, V. I. Belousov, et al., Bull. Rus. Acad. Sci. Phys., 84, No. 1, 66–69 (2020). https://doi.org/https://doi.org/10.3103/S1062873820010165

    Article  Google Scholar 

  9. Yu.Yu. Danilov, A. N. Leontyev, A.M.Malkin, et al., Doklady Phys., 607, No. 6, 159–164 (2022). https://doi.org/10.1134/S1028335822060040

  10. Yu.Yu. Danilov, A. N. Denisenko, A. N. Leontyev et al., Radiophys. Quantum Electron., 65, Nos. 5–6, 410–424 (2022). https://doi.org/https://doi.org/10.1007/s11141-023-10223-5

    Article  ADS  Google Scholar 

  11. R. M. Rozental, Y. Y. Danilov, A. N. Leontyev, et al., IEEE Trans. Electron Dev., 69, No. 3, 1451–1456 (2022). https://doi.org/https://doi.org/10.1109/TED.2022.3146218

    Article  ADS  Google Scholar 

  12. Y. Y. Danilov, A. N. Leontyev, N.V. Leontiev, et al., IEEE Trans. Electron Dev., 68, No. 4, 2130–2132 (2021). https://doi.org/https://doi.org/10.1109/TED.2021.3055162

    Article  ADS  Google Scholar 

  13. V. E. Zapevalov, Radiophys. Quantum Electron., 54, Nos. 8–9, 507–518 (2011). https://doi.org/https://doi.org/10.1007/s11141-012-9326-8

    Article  ADS  Google Scholar 

  14. E. B.Abubakirov, A.N. Denisenko, and A.E. Fedotov, Phys. Plasmas, 26, No. 3, 033302 (2019). https://doi.org/https://doi.org/10.1063/1.5085483

    Article  ADS  Google Scholar 

  15. A. L. Gol’denberg and M. I.Petelin, Radiophys. Quantum Electron., 16, No. 1, 105–111 (1973). https://doi.org/10.1007/BF01080801

  16. G. S.Nusinovich, Int. J. Electron., 64, No. 1, 127–135 (1988). https://doi.org/https://doi.org/10.1080/00207218808962789

    Article  Google Scholar 

  17. E. V. Zasypkin and M.A.Moiseev, Élektron. Tekh., Ser. I, Élektron. SVCh, No. 1, 12–16 (1989).

  18. I. E. Botvinnik, V. L. Bratman, G. G. Denisov, and M.M.Ofitserov, Pis’ma Zh. Tekh. Fiz., 10, No. 13, 792–796 (1984).

    Google Scholar 

  19. A. Sh. Fiks, “Distortion of the nonuniform pulsed magnetic field by a conducting shell,” Preprint No. 142 [in Russian], Inst. Appl. Phys., Gorky (1986).

  20. S. I. Krementsov, M.D.Raizer, and A. V. Smorgonsky, Pis’ma Zh. Tekh. Fiz., 2, No. 10, 453–457 (1976).

    Google Scholar 

  21. N. S. Ginzburg, V. I. Krementsov, M. I.Petelin, et al., Zh. Tekh. Fiz., 49, No. 2, 378–385 (1979).

  22. I.E. Botvinnik, V. L. Bratman, Volkov A. B., et al, JETP Lett., 35, No. 10, 516–519 (1982).

  23. I. I. Antakov, I. G. Gachev, and E. V. Zasypkin, Radiophys. Quantum Electron., 37, No. 11, 943–952 (1994). https://doi.org/https://doi.org/10.1007/BF01057286

    Article  ADS  Google Scholar 

  24. E.V. Ilyakov, I. S. Kulagin, V.N. Manuilov, and A. S. Shevchenko, Radiophys. Quantum Electron., 50, No. 9, 713–719 (2007). https://doi.org/https://doi.org/10.1007/s11141-007-0062-4

    Article  ADS  Google Scholar 

  25. M. V. Vilkov, M.Yu. Glyavin, A. L. Gol’denberg, and M. I.Petelin, Pis’ma Zh. Tekh. Fiz., 38, No. 14, 80–85 (2012).

  26. E. V. Ilyakov, I. S. Kulagin, V. N. Manuilov, and B. Z.Movshevich, Prikl. Fiz., No. 6, 89–94 (2010).

  27. N. I. Zaitsev, G. S.Korablev, I. S.Kulagin, and V.E.Nechaev, Pis’ma Zh. Tekh. Fiz., 7, No. 11, 673–676 (1981).

    Google Scholar 

  28. O. I. Louksha and G. G. Sominsky, Zh. Tekh. Fiz., 64, No. 11, 160–168 (1994).

    Google Scholar 

  29. Sh. E.Tsimring, Int. J. Infrared Millim. Terahertz Waves, 22, No. 10, 1433–1468 (2001). https://doi.org/https://doi.org/10.1023/A:1015034506088

    Article  Google Scholar 

  30. D.V. Kas’yanenko, O. I. Louksha, B. Piosczyk, G. G. Sominsky, and M. Thumm, Radiophys. Quantum Electron., 47, Nos. 5–6, 414–420 (2004). https://doi.org/10.1023/B:RAQE.0000046315.10190.1c

  31. O. I. Louksha, D. B. Samsonov, G.G. Sominskii, and S.V. Semin, Tech. Phys., 58, No. 5, 751–759 (2013). https://doi.org/https://doi.org/10.1134/S1063784213050137

    Article  Google Scholar 

  32. Z. C. Ioannidis, I. Chelis, G.Gantenbein, et al., IEEE Trans. Electron Dev., 67, No. 12, 5783–5789 (2020). https://doi.org/10.1109/TED.2020.3025751

  33. E. B.Abubakirov, A.N. Denisenkov, A.P.Konyushkov, et al., Bull. Russ. Acad. Sci. Phys., 82, No. 1, 48–52 (2018). https://doi.org/10.3103/S1062873818010033

  34. V. E. Nechaev, E. I. Soluyanov, and M. I. Fuks, Pis’ma Zh. Tekh. Fiz., 5, No. 2, 113–117 (1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Leontyev.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 66, Nos. 7–8, pp. 637–644, July–August 2023. Russian https://doi.org/10.52452/00213462_2023_66_07_637

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abubakirov, E.B., Denisenko, A.N., Leontyev, A.N. et al. First Experimental Studies of the High-Power Relativistic Ka-Band Gyrotron with Beam Compression in the Electron-Optical System. Radiophys Quantum El (2024). https://doi.org/10.1007/s11141-024-10317-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11141-024-10317-8

Navigation