Skip to main content
Log in

Development of High-Current Relativistic Gyrotrons with the Operating TM Mode

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We present the main stages of developing a subgigawatt Ka-band gyrotron with the operating TM5, 1 mode. In order to discriminate the TE modes, we propose using a longitudinally slitted cavity, for which an analytical theory has been developed, calculations by the finite-element method have been made, and “cold” electrodynamic measurements (in the absence of an electron beam) have been performed. The first experimental studies of the gyrotron based on the classical scheme with separation of the beam formation space and the electron–wave interaction region have been carried out. The problem of the rise of parasitic oscillations at the TE mode, which are related to self-excitation of the beam formation region, has been revealed experimentally and within the framework of the three-dimensional simulation by the particle-in-cell method. A modification of the system, where the beam formation region shifts to the gyrotron cavity, is proposed as a way to solve this problem. Modeling has demonstrated the possibility to generate radiation with a power of about 150 MW in such a system. Preliminary calculations of a W-band gyrotron operated at the TM15, 1 mode with a similar output radiation power level have been made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. É. B.Abubakirov, I.V. Bandurkin, A.A.Vikharev, et al., Radiophys. Quantum Electron., 58, No. 10, 755–768 (2016). https://doi.org/10.1007/s11141-016-9648-z

  2. É. B.Abubakirov, A.A.Vikharev, N. S.Ginzburg, et al., Radiophys. Quantum Electron., 62, Nos. 7–8, 520–527 (2019). https://doi.org/10.1007/s11141-020-09998-8

    Article  ADS  Google Scholar 

  3. A.V.Vodopyanov, M.Yu. Glyavin, S.V. Golubev, et al., Tech. Phys. Lett., 43, No. 2, 186–189 (2017). https://doi.org/10.1134/S1063785017020286

    Article  ADS  Google Scholar 

  4. I. S.Abramov, E. D. Gospodchikov, and A. G. Shalashov, Phys. Rev. Appl., 10, 034065 (2018). https://doi.org/10.1103/PhysRevApplied.10.034065

  5. V. E. Zapevalov, Radiophys. Quantum Electron., 54, Nos. 8–9, 507–518 (2011). https://doi.org/10.1007/s11141-012-9326-8

    Article  ADS  Google Scholar 

  6. A.G.Litvak, G.G.Denisov, and M.Yu.Glyavin, IEEE J. Microw., 1, No. 1, 260–268 (2021). https://doi.org/10.1109/JMW.2020.3030917

    Article  Google Scholar 

  7. N. I. Zaitsev, S. A. Zapevalov, A. V. Malygin, et al., Radiophys. Quantum Electron., 53, No. 3, 178–181 (2010). https://doi.org/10.1007/s11141-010-9214-z

    Article  ADS  Google Scholar 

  8. É. B.Abubakirov, A.V. Chirkov, G. G. Denisov, et al., IEEE Trans. Electron Dev., 64, No. 4, 1865–1867 (2017). https://doi.org/10.1109/TED.2017.2664106

    Article  ADS  Google Scholar 

  9. N. S. Ginzburg and G. S.Nusinovich, Radiophys. Quantum Electron., 22, No. 6, 522–528 (1979). https://doi.org/10.1007/BF01081232

    Article  ADS  Google Scholar 

  10. M. Thumm, J. Infrared Millim. Terahertz Waves, 41, 1–140 (2020). https://doi.org/10.1007/s10762-019-00631-y

    Article  Google Scholar 

  11. V. L. Bratman, N. S. Ginzburg, G. S.Nusinovich, et al., Int. J. Electron., 51, No. 4, 541–567 (1981). https://doi.org/10.1080/00207218108901356

  12. É. B.Abubakirov, Radiophys. Quantum Electron., 26, No. 4, 379–383 (1983). https://doi.org/10.1007/BF01033951

    Article  ADS  Google Scholar 

  13. H. Y.Yao, C. H.Wei, and T.H.Chang, Phys. Rev. E, 104, No. 6, 065205 (2021). https://doi.org/10.1103/PhysRevE.104.065205

  14. V. I. Belousov, S.N.Vlasov, N. A. Zavolsky, et al., Radiophys. Quantum Electron., 57, No. 6, 446–454 (2014). https://doi.org/10.1007/s11141-014-9527-4

    Article  ADS  Google Scholar 

  15. I. E. Botvinnik, V. L. Bratman, G. G. Denisov, and M.M.Ofitserov, Pis’ma Zh. Tekh. Fiz., 10, No. 13, 792–796 (1984).

    Google Scholar 

  16. I.P.Kotik, V.V.Meriakri, M.V. Persikov, and A.N. Sivov, Radiotekh. Élektron., 10, No. 7, 1220–1232 (1965).

    Google Scholar 

  17. V. L. Bratman, V.P. Gubanov, G. G. Denisov, et al., Pis’ma Zh. Tekh. Fiz., 10, No. 13, 807–811 (1984).

    Google Scholar 

  18. F. H. Crawford and M.D.Hare, Proc. IRE, 35, No. 4, 361–369 (1947). https://doi.org/10.1109/JRPROC.1947.232605

    Article  Google Scholar 

  19. Yu.A.Katsman, Microwave Devices: Theory and Fundamentals for Calculation and Design of Electron Devices. Vol. II [in Russian], Vysshaya Shkola, Moscow (1973).

  20. M. B. Goykhman, V.V. Kladukhin, S.V. Kladukhin, et al., Tech. Phys. Lett., 40, No. 1, 84–86 (2014). https://doi.org/10.1134/S1063785014010222

    Article  ADS  Google Scholar 

  21. É. B.Abubakirov, A.N. Denisenko, A. E. Fedotov, et al., Phys. Plasmas, 26, No. 3, 033302 (2019). https://doi.org/10.1063/1.5085483

  22. V. L. Bratman, N. S. Ginzburg, G. S.Nusinovich, et al., Int. J. Electron., 51, No. 4, 541–567 (1981). https://doi.org/10.1080/00207218108901356

  23. V. L. Bratman, Yu.K.Kalynov, and A. É. Fedotov, Tech. Phys., 43, No. 10, 1219–1225 (1998). https://doi.org/10.1134/1.1259158

    Article  Google Scholar 

  24. S.N.Vlasov, G.M. Zhislin, I.M.Orlova, et al., Radiophys. Quantum Electron., 12, No. 8, 972–978 (1969). https://doi.org/10.1007/BF01031202

  25. L. A.Weinstein, Open Resonators and Open Waveguides, Golem Press, Boulder, Co. (1969).

    Google Scholar 

  26. S. N. Vlasov and I.M.Orlova, Radiophys. Quantum Electron., 17, No. 1, 115–119 (1974). https://doi.org/10.1007/BF01037072

    Article  ADS  Google Scholar 

  27. N. F.Kovalev, V.E. Nechaev, M. I.Petelin, and N. I. Zaitsev, IEEE Trans. Plasma Sci., 26, No. 3, 246–251 (1998). https://doi.org/10.1109/27.700750

    Article  ADS  Google Scholar 

  28. V. V.Rostov, E.M.Totmeninov, R. V.Tsygankov, et al., IEEE Trans. Electron Dev., 65, No. 7, 3019–3025 (2018). https://doi.org/10.1109/TED.2018.2833456

    Article  ADS  Google Scholar 

  29. D.Wang, Y.Teng, S. Li, et al., IEEE Trans. Electron Dev., 68, No. 6, 3015–3020 (2021). https://doi.org/10.1109/TED.2021.3074114

    Article  ADS  Google Scholar 

  30. N. S. Ginzburg, V. I. Krementsov, M. I.Petelin, et al., Zh. Tekh. Fiz., 49, No. 2, 378–385 (1979).

  31. A.N. Leontyev, É.B.Abubakirov, V. I. Belousov, et al., Bull. Russ. Acad. Sci. Phys., 84, No. 1, 66–69 (2020). https://doi.org/10.3103/S1062873820010165

    Article  Google Scholar 

  32. V.P.Tarakanov, Proc. EPJ Web Conf., 149, 04024 (2017). https://doi.org/10.1051/epjconf/20171490

    Article  Google Scholar 

  33. D.Zhang, C. An, J. Zhang, et al., IEEE Trans. Electron Dev., 67, No. 12, 5750–5754 (2020). https://doi.org/10.1109/TED.2020.3030560

    Article  ADS  Google Scholar 

  34. A. L. Gol’denberg and M. I.Petelin, Radiophys. Quantum Electron., 16, No. 1, 106–111 (1973). https://doi.org/10.1007/BF01080801

  35. S. D.Korovin, V. V.Rostov, S.D.Polevin, et al., Proc. IEEE, 92, No. 7, 1082–1095 (2004). https://doi.org/10.1109/JPROC.2004.829020

  36. Z. C. Ioannidis, I. Chelis, G.Gantenbein, et al., IEEE Trans. Electron Dev., 67, No. 12, 5783–5789 (2020). https://doi.org/10.1109/TED.2020.3025751

  37. L. A.Weinstein, Electromagnetic Waves [in Russian], Radio i Svyaz’, Moscow (1988).

    Google Scholar 

  38. Yu.Yu. Danilov, Radiophys. Quantum Electron., 54, Nos. 8–9, 627–631 (2012). https://doi.org/10.1007/s11141-012-9323-y

    Article  ADS  Google Scholar 

  39. N. A. Semenov, Technical Electrodynamics [in Russian], Svyaz’, Moscow (1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Leontyev.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 65, Nos. 5–6, pp. 448–464, May–June 2022. Russian DOI: https://doi.org/10.52452/00213462_2022_65_05_448

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Danilov, Y.Y., Denisenko, A.N., Leontyev, A.N. et al. Development of High-Current Relativistic Gyrotrons with the Operating TM Mode. Radiophys Quantum El 65, 410–424 (2022). https://doi.org/10.1007/s11141-023-10223-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-023-10223-5

Navigation