Skip to main content
Log in

Scattering of a Plane Electromagnetic Wave by a Multilayer Spherical Lens

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We propose an analytical solution of the problem of diffraction of a plane electromagnetic wave by a multilayer dielectric (including plasmon) sphere. The solution is obtained using the method of separation of variables. New efficient recurrence relationships are obtained for calculations of the fields in layers, as well as formulas for the fields in the near and far diffraction zones. The novelty of the proposed solution is connected with the way of representing its radial part in the form of normalized functions. It is shown that as the number of the lens layers, which approximate the smooth profile of dielectric permittivity, grows, the electric field at the focusing point increases and reaches the maximum value. This allows one to determine the minimum required number of layers in practical problems. Resonance properties of metal-dielectric nanoparticles are studied in the optical band.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.O. Afanasyev, M. B. Manuilov, S. M. Matytsin, and V. A. Sledkov, Antenny, 3, 16 (2015).

  2. A. I. Skorodumov, Multichannel antenna systems for new-generation mobile communication with optimal space frequency filtering [in Russian]: Doct. Sci. Theses, Moscow Aviation Inst. (State Techn. Univ.), Moscow (2010).

  3. V. A.Kaloshin, in: 13th Intern. Crimean Conf. “Microwave Engineering and Telecommunication Technologies” (KryMiCo-2003), September 18–12, 2003, Sevastopol, Ukraine, p. 387.

  4. R.A. Shore, IEEE Antennas and Propag. Magazine, 57, No. 6, 69 (2015).

    Article  ADS  Google Scholar 

  5. S.P. Morgan, IRE Transactions Antennas Propag., 7, No. 4, 342 (1959).

    Article  ADS  Google Scholar 

  6. V. A.Kaloshin, Radiotekh. Élektron., 1, 26 (1973).

  7. V. A.Kaloshin and A. S.Venetsky, in: 7th Intern. Conf. Mathematical Methods in Electromagnetic Theory (MMET), 2–5 June 1998, Kharkov, Ukraine, p. 157.

  8. J. R. Sanford, Spherically stratified microwave lenses: Ph.D. Thesis, Ecole Polytechnique Federale de Lausanne, Lausanne, 1992.

  9. J. A. Lock, J. Opt. Soc. America A, 25, No. 12, 2971 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  10. E. Braun, IRE Transactions on Antennas and Propagation, 4, No. 2, 132 (1956).

    Article  ADS  Google Scholar 

  11. T. A. Rhys, IEEE Transactions on Antennas Propagat., 18, No. 4, 497 (1970).

    Article  ADS  Google Scholar 

  12. E. G. Zelkin and R.A. Petrova, Lens Antennas [in Russian], Sov. Radio, Moscow (1974).

  13. A. S.Venetsky and V.A.Kaloshin, Zhurn. Radio´elektron., 5, Art. no. 3 (2008).

  14. B. Schoenlinner, X.Wu, J. P.Ebling, et al., IEEE Trans. Microwave Theory and Techniques, 50, No. 9, 2166 (2002).

    Article  ADS  Google Scholar 

  15. C. A. Fernandes, IEEE Antennas and Propagation Magazine, 41, No. 5, 141 (1999).

    Article  ADS  Google Scholar 

  16. W. C. Chew, Waves and Fields in Inhomogeneous Media, Van Nostrand Reinhold, New York (1990).

    Google Scholar 

  17. N. A. Logan, Proc. IEEE, 53, No. 8, 773 (1965).

    Article  Google Scholar 

  18. M. Born and E.Wolf, Principles of Optics, Cambridge Univ. Press (1999).

  19. G. Mie, Annalen der Physik, 330, No. 3, 377 (1908).

    Article  ADS  Google Scholar 

  20. W. Hergert and T.Wriedt, The Mie Theory: Basics and Applications. Springer Series in Optical Sciences. Springer, Berlin (2012).

  21. P. Debye, Annalen der Physik, 335, No. 11, 57 (1909).

    Article  ADS  Google Scholar 

  22. A. L. Aden and M.Kerker, J. Appl. Phys., 22, No. 10, 1242 (1951).

  23. J.R.Wait, Applied Scientific Research B, 10, No. 5–6, 441 (1962).

  24. Z. S.Wu and Y. P.Wang, Radio Science, 26, No. 6, 1393 (1991).

  25. J.A. Stratton, Electromagnetic Theory, McGraw-Hill, New York (1941).

    MATH  Google Scholar 

  26. R. F. Harrington, Time-harmonic electromagnetic fields, McGraw-Hill, New York (1961).

    Google Scholar 

  27. J. Mikulski and E. L.Murphy, IEEE Trans. Anten. Propag., 11, No. 2, 169 (1963).

  28. H. Mieras, IEEE Trans. Anten. Propag., 30, No. 6, 1221 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  29. S. Vinogradov, E. Vinogradova, and P. Smith, in: Intern. Conf. Electromagnetics in Advanced Applications, September, 15–17, 1999, Torino, Italy, p. 277.

  30. L.-W. Li, P.-S.Kooi, M.-S. Leong, et al., IEEE Trans. Microwave Theory and Techniques, 42, No. 12, 2302 (1994).

  31. E. V.Komarova, Antenna and Diffraction Properties of the Multilayer Luneberg Lens [in Russian]. Cand. Tech. Sci. Theses, Urals Federal Univ., Ekaterinburg (2012).

  32. J. R. Sanford, IEEE Trans. Anten. Propag., 42, No. 5, 690 (1994).

    Article  ADS  Google Scholar 

  33. B.Fuchs, S.Palud, L. Le Coq, et al., IEEE Trans. Anten. Propag., 56, No. 2, 450 (2008).

  34. S. Rondineau, A. I.Nosich, D. Jean-Pierre, et al., IEEE Trans. Anten. Propag., 52, No. 5, 1270 (2004).

  35. V. V. Akhiyarov, Zhurn. Radio´elektron., 12, Art. no. 13 (2015).

  36. A. Lerer, I. Donets, and S. Bryzgalo, J. Electromagnetic Waves and Applications, 10, No. 6, 765 (1996).

    Article  Google Scholar 

  37. G. Godi, R. Sauleau, and D.Thouroude, IEEE Trans. Anten. Propag., 53, No. 4, 1278 (2005).

  38. A. D. Greenwood and J.-M. Jin, IEEE Trans. Anten. Propag., 47, No. 8, 1260 (1999).

    Article  ADS  Google Scholar 

  39. D.P. Zoric, D. I. Olcan, and B.M.Kolundzija, in: 2012 Intern. Symposium on Antennas and Propag. (ISAP), October 29–November 2, 2012, Nagoya, Japan, p. 918.

  40. Z. Sipus, N.Burum, and J.Bartolic, Microwave and Optic. Techn. Lett., 36, No. 4, 276 (2003).

    Google Scholar 

  41. V. V.Klimov, Nanoplasmonics [in Russian], Fizmatlit, Moscow (2009).

  42. S.Peng, J.M.McMahon, G.C. Schatz, et al., Proc. Nath. Acad. Sci. USA, 107, No. 33, 14530 (2010).

  43. P.K. Jain, K. S. Lee, I. H. el-Sayed, and M. A. el-Sayed, J. Phys. Chem. B, 110, 7238 (2006).

  44. EMSS FEKO, https://altairhyperworks.com/product/FEKO .

  45. http://www.luxpop.com .

  46. B.Fuchs, L. le Coq, O. Lafond, and S.Rondineau, IEEE Trans. Anten. Propag., 55, No. 2, 283 (2007).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.B. Manuilov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 61, No. 7, pp. 583–595, July 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afanasyev, P.O., Akopov, A.A., Lehrer, A. et al. Scattering of a Plane Electromagnetic Wave by a Multilayer Spherical Lens. Radiophys Quantum El 61, 516–527 (2018). https://doi.org/10.1007/s11141-018-9912-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-018-9912-5

Navigation