Skip to main content
Log in

Problem of quantifying quantum correlations with non-commutative discord

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this work we analyze a non-commutativity measure of quantum correlations recently proposed by Guo (Sci Rep 6:25241, 2016). By resorting to a systematic survey of a two-qubit system, we detected an undesirable behavior of such a measure related to its representation-dependence. In the case of pure states, this dependence manifests as a non-satisfactory entanglement measure whenever a representation other than the Schmidt’s is used. In order to avoid this basis-dependence feature, we argue that a minimization procedure over the set of all possible representations of the quantum state is required. In the case of pure states, this minimization can be analytically performed and the optimal basis turns out to be that of Schmidt’s. In addition, the resulting measure inherits the main properties of Guo’s measure and, unlike the latter, it reduces to a legitimate entanglement measure in the case of pure states. Some examples involving general mixed states are also analyzed considering such an optimization. The results show that, in most cases of interest, the use of Guo’s measure can result in an overestimation of quantum correlations. However, since Guo’s measure has the advantage of being easily computable, it might be used as a qualitative estimator of the presence of quantum correlations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Modi, K., Brodutch, A., Cable, H., Paterek, T., Vedral, V.: The classical-quantum boundary for correlations: discord and related measures. Rev. Mod. Phys. 84, 1655 (2012)

    Article  ADS  Google Scholar 

  2. Adesso, G., Bromley, T.R., Cianciaruso, M.: Measures and applications of quantum correlations. J. Phys. A Math. Theor. 49, 473001 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Szańkowski, P., Trippenbach, M., Cywiński, Ł., Band, Y.B.: The dynamics of two entangled qubits exposed to classical noise: role of spatial and temporal noise correlations. Quantum Inf. Process. 14, 3367 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Sun, W.-Y., Wang, D., Shi, J.-D., Ye, L.: Exploration quantum steering, nonlocality and entanglement of two-qubit X-state in structured reservoirs. Sci. Rep. 7, 39651 (2017)

    Article  ADS  Google Scholar 

  5. Sun, W.-Y., Wang, D., Yang, J., Ye, L.: Enhancement of multipartite enanglement in an open system under non-inertial frames. Quantum Inf. Process. 16, 90 (2017)

    Article  ADS  Google Scholar 

  6. Wang, D., Ming, F., Huang, A.-J., Sun, W.-Y., Shi, J.-D., Ye, L.: Exploration of quantum-memory-assisted entropic uncertainty relations in a noninertial frame. Laser Phys. Lett. 14, 055205 (2017)

    Article  ADS  Google Scholar 

  7. Schrödinger, E., Naturwissenschaften 23, 844 (1935); English translation in Wheeler, J.A., Zurek, W.H. (eds.) Quantum Theory and Measurement, p. 152. Princeton University Press, Princeton (1983)

  8. Schrödinger, E.: Discussion of probability relations between separated systems. Math. Proc. Cambridge Philos. Soc. 31, 555 (1935)

    Article  ADS  MATH  Google Scholar 

  9. Bell, J.S.: On the Einstein podolsky rosen paradox. Physics 1, 195 (1964)

    Google Scholar 

  10. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  11. Hayashi, M.: Quantum Information: An Introduction. Springer, Berlin (2006)

    MATH  Google Scholar 

  12. Knill, E., Laflamme, R.: Power of one bit of quantum information. Phys. Rev. Lett. 81, 5672 (1998)

    Article  ADS  Google Scholar 

  13. Braunstein, S.L., Caves, C.M., Jozsa, R., Linden, N., Popescu, S., Schack, R.: Separability of very noisy mixed states and implications for NMR quantum computing. Phys. Rev. Lett. 83, 1054 (1999)

    Article  ADS  Google Scholar 

  14. Meyer, D.A.: Sophisticated quantum search without entanglement. Phys. Rev. Lett. 85, 2014 (2000)

    Article  ADS  Google Scholar 

  15. Datta, A., Flammia, S.T., Caves, C.M.: Entanglement and the power of one qubit. Phys. Rev. A 72, 042316 (2005)

    Article  ADS  Google Scholar 

  16. Datta, A., Vidal, G.: Role of entanglement and correlations in mixed-state quantum computation. Phys. Rev. A 75, 042310 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  17. Datta, A., Shaji, A., Caves, C.M.: Quantum discord and the power of one qubit. Phys. Rev. Lett. 100, 050502 (2008)

    Article  ADS  Google Scholar 

  18. Lanyon, B.P., Barbieri, M., Almeida, M.P., White, A.G.: Experimental quantum computing without entanglement. Phys. Rev. Lett. 101, 200501 (2008)

    Article  ADS  Google Scholar 

  19. Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  MATH  Google Scholar 

  20. Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A 34, 6899 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Lang, M.D., Caves, C.M.: Quantum discord and the geometry of bell-diagonal states. Phys. Rev. Lett. 105, 150501 (2010)

    Article  ADS  Google Scholar 

  22. Cen, L.-X., Li, X.Q., Shao, J., Yan, Y.J.: Quantifying quantum discord and entanglement of formation via unified purifications. Phys. Rev. A 83, 054101 (2011)

    Article  ADS  Google Scholar 

  23. Adesso, G., Datta, A.: Quantum versus classical correlations in Gaussian states. Phys. Rev. Lett. 105, 030501 (2010)

    Article  ADS  Google Scholar 

  24. Giorda, P., Paris, M.G.A.: Gaussian quantum discord. Phys. Rev. Lett. 105, 020503 (2010)

    Article  ADS  Google Scholar 

  25. Ali, M., Rau, A.R.P., Alber, G.: Quantum discord for two-qubit X states. Phys. Rev. A 81, 042105 (2010)

    Article  ADS  Google Scholar 

  26. Ali, M., Rau, A.R.P., Alber, G.: Quantum discord for two-qubit X states. Phys. Rev. A 82, 069902(E) (2010)

    Article  ADS  Google Scholar 

  27. Shi, M., Yang, W., Jiang, F., Du, J.: Quantum discord of two-qubit rank-2 states. J. Phys. A Math. Theor. 44, 415304 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Chen, Q., Zhang, C., Yu, S., Yi, X.X., Oh, C.H.: Quantum discord of two-qubit X states. Phys. Rev. A 84, 042313 (2011)

    Article  ADS  Google Scholar 

  29. Lu, X.-M., Ma, J., Xi, Z., Wang, X.: Optimal measurements to access classical correlations of two-qubit states. Phys. Rev. A 83, 012327 (2011)

    Article  ADS  Google Scholar 

  30. Girolami, D., Adesso, G.: Quantum discord for general two-qubit states: analytical progress. Phys. Rev. A 83, 052108 (2011)

    Article  ADS  Google Scholar 

  31. Li, B., Wang, Z.X., Fei, S.M.: Quantum discord and geometry for a class of two-qubit states. Phys. Rev. A 83, 022321 (2011)

    Article  ADS  Google Scholar 

  32. Luo, S.: Quantum discord for two-qubit systems. Phys. Rev. A 77, 042303 (2008)

    Article  ADS  Google Scholar 

  33. Huang, Y.: Computing quantum discord is NP-complete. New J. Phys. 16, 033027 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  34. Dakić, B., Vedral, V., Brukner, C.: Necessary and sufficient condition for nonzero quantum discord. Phys. Rev. Lett. 105, 190502 (2010)

    Article  ADS  MATH  Google Scholar 

  35. Brodutch, A., Terno, D.R.: Quantum discord, local operations, and Maxwell’s demons. Phys. Rev. A 81, 062103 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  36. Paula, F.M., de Oliveira, T.R., Sarandy, M.S.: Geometric quantum discord through the Schatten 1-norm. Phys. Rev. A 87, 064101 (2013)

    Article  ADS  Google Scholar 

  37. Spehner, D., Orszag, M.: Geometric quantum discord with Bures distance. New J. Phys. 15, 103001 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Spehner, D., Orszag, M.: Geometric quantum discord with Bures distance: the qubit case. J. Phys. A Math. Theor. 47, 035302 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Jakóbczyk, L.: Spontaneous emission and quantum discord: comparison of Hilbert–Schmidt and trace distance discord. Phys. Lett. A 378, 3248–3253 (2014)

    Article  ADS  Google Scholar 

  40. Luo, S., Fu, S.: Hybrid potential model of the \(\alpha \)-cluster structure of 212Po. Phys. Rev. A 82, 034302 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  41. Girolami, D., Tufarelli, T., Adesso, G.: Characterizing nonclassical correlations via local quantum uncertainty. Phys. Rev. Lett. 110, 240402 (2013)

    Article  ADS  Google Scholar 

  42. Guo, Y.: Non-commutativity measure of quantum discord. Sci. Rep. 6, 25241 (2016)

    Article  ADS  Google Scholar 

  43. Guo, Y., Hou, J.: A class of separable quantum states. J. Phys. A Math. Theor. 45, 505303 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  44. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  MATH  Google Scholar 

  45. Zyczkowski, K., Horodecki, P., Sanpera, A., Lewenstein, M.: Volume of the set of separable states. Phys. Rev. A 58, 883 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  46. Pozniak, M., Zyczkowski, K., Kus, M.: Composed ensembles of random unitary matrices. J. Phys. A Math. Gen. 31, 1059 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Bengtsson, I., Zyczkowski, K.: Geometry of Quantum States: An Introduction to Quantum Entanglement. Cambridge University Press, Cambridge (2006)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

A.P.M., D.B., T.M.O, and P.W.L. acknowledge the Argentinian agency SeCyT-UNC and CONICET for financial support. D. B. has a fellowship from CONICET. A.V.H. gratefully acknowledges financial support from DGAPA, UNAM through project PAPIIT IA101816.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Majtey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majtey, A.P., Bussandri, D.G., Osán, T.M. et al. Problem of quantifying quantum correlations with non-commutative discord. Quantum Inf Process 16, 226 (2017). https://doi.org/10.1007/s11128-017-1669-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-017-1669-9

Keywords

Navigation