Skip to main content
Log in

Non-commutative measure of quantum correlations under local operations

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We study some desirable properties of recently introduced measures of quantum correlations based on the amount of non-commutativity quantified by the Hilbert–Schmidt norm (Guo in Sci Rep 6:25241, 2016; Majtey et al. in Quantum Inf Process 16:226, 2017). Specifically, we show that: (1) for any bipartite (\(A+B\)) state, the measures of quantum correlations with respect to subsystem A are non-increasing under any local commutative preserving operation on subsystem A, and (2) for Bell-diagonal states, the measures are non-increasing under arbitrary local operations on B. Our results accentuate the potentialities of such measures and exhibit them as valid monotones in a resource theory of quantum correlations with free operations restricted to the appropriate local channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. A LCPO corresponds to a map \(\Delta [\cdot ]\) that is completely positive trace preserving and preserves the commutativity [36], that is, \([\Delta [\rho ],\Delta [\sigma ]]=0 \ \ \forall \;\rho ,\sigma \; \text {such that} \; [\rho ,\sigma ]=0.\)

  2. Recall that a map \(\Phi [\cdot ]\) is said to be unital if \(\Phi [{\mathbb {I}}]={\mathbb {I}}\), whereas a completely decohering map \(\Phi [\cdot ]\) is such that \(\Phi [\rho ]=\sum _ip_i \left| {i}\right\rangle \left\langle {i}\right| \), for some orthonormal basis \(\{\left| {i}\right\rangle \}\) and (state-dependent) probabilities \(\{p_i\}\).

References

  1. Knill, E., Laflamme, R.: Power of one bit of quantum information. Phys. Rev. Lett. 81, 5672 (1998)

    Article  ADS  Google Scholar 

  2. Laflamme, R., Cory, D.G., Negrevergne, C., Viola, L.: NMR quantum information processing and entanglement. Quantum Inf. Comput. 2, 166 (2002)

    MathSciNet  MATH  Google Scholar 

  3. Braunstein, S.L., Caves, C.M., Jozsa, R., Linden, N., Popescu, S., Schack, R.: Separability of very noisy mixed states and implications for NMR quantum computing. Phys. Rev. Lett. 83, 1054 (1999)

    Article  ADS  Google Scholar 

  4. Meyer, D.A.: Sophisticated quantum search without entanglement. Phys. Rev. Lett. 85, 2014 (2000)

    Article  ADS  Google Scholar 

  5. Datta, A., Flammia, S.T., Caves, C.M.: Entanglement and the power of one qubit. Phys. Rev. A 72, 042316 (2005)

    Article  ADS  Google Scholar 

  6. Datta, A., Vidal, G.: Role of entanglement and correlations in mixed-state quantum computation. Phys. Rev. A 75, 042310 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  7. Datta, A., Shaji, A., Caves, C.M.: Quantum discord and the power of one qubit. Phys. Rev. Lett. 100, 050502 (2008)

    Article  ADS  Google Scholar 

  8. Lanyon, B.P., Barbieri, M., Almeida, M.P., White, A.G.: Experimental quantum computing without entanglement. Phys. Rev. Lett. 101, 200501 (2008)

    Article  ADS  Google Scholar 

  9. Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett 88, 017901 (2001)

    Article  ADS  Google Scholar 

  10. Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A 34, 6899 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  11. Lang, M.D., Caves, C.M.: Quantum discord and the geometry of bell-diagonal states. Phys. Rev. Lett. 105, 150501 (2010)

    Article  ADS  Google Scholar 

  12. Cen, L.-X., Li, X.Q., Shao, J., Yan, Y.J.: Quantifying quantum discord and entanglement of formation via unified purifications. Phys. Rev. A 83, 054101 (2011)

    Article  ADS  Google Scholar 

  13. Adesso, G., Datta, A.: Quantum versus classical correlations in Gaussian states. Phys. Rev. Lett. 105, 030501 (2010); Giorda, P., Paris, M., G., A.: Gaussian Quantum Discord. ibid. 105, 020503 (2010)

  14. Ali, M., Rau, A., R., P., Alber, G.: Quantum discord for two-qubit X states. Phys. Rev. A 81, 042105 (2010); see also Ali M. , Rau, A., R., P., and Alber, G., ibid. 82, 069902(E) (2010)

  15. Shi, M., Yang, W., Jiang, F., Du, J.: Quantum discord of two-qubit rank-2 states. J. Phys. A Math. Theor. 44, 415304 (2011)

    Article  MathSciNet  Google Scholar 

  16. Chen, Q., Zhang, C., Yu, S., Yi, X.X., Oh, C.H.: Quantum discord of two-qubit X states. Phys. Rev. A 84, 042313 (2011)

    Article  ADS  Google Scholar 

  17. Lu, X.M., Ma, J., Xi, Z., Wang, X.: Optimal measurements to access classical correlations of two-qubit states. Phys. Rev. A 83, 012327 (2011)

    Article  ADS  Google Scholar 

  18. Girolami, D., Adesso, G.: Quantum discord for general two-qubit states: analytical progress. Phys. Rev. A 83, 052108 (2011)

    Article  ADS  Google Scholar 

  19. Li, B., Wang, Z.X., Fei, S.M.: Quantum discord and geometry for a class of two-qubit states. Phys. Rev. A 83, 022321 (2011)

    Article  ADS  Google Scholar 

  20. Huang, Y.: Quantum discord for two-qubit X states: analytical formula with very small worst-case error. Phys. Rev. A 88, 014302 (2013)

    Article  ADS  Google Scholar 

  21. Luo, S.: Quantum discord for two-qubit systems. Phys. Rev. A 77, 042303 (2008)

    Article  ADS  Google Scholar 

  22. Huang, Y.: Computing quantum discord is NP-complete. New J. Phys. 16, 033027 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  23. Hu, M.-L., Fan, H.: Measurement-induced nonlocality based on the trace norm. New J. Phys. 17, 033004 (2015)

    Article  ADS  Google Scholar 

  24. Hu, M.-L., Fan, H.: Dynamics of entropic measurement-induced nonlocality in structured reservoirs. Ann. Phys. 327, 2343 (2012)

    Article  ADS  Google Scholar 

  25. Dakić, B., Vedral, V., Brukner, C.: Necessary and sufficient condition for nonzero quantum discord. Phys. Rev. Lett. 105, 190502 (2010)

    Article  ADS  Google Scholar 

  26. Brodutch, A., Terno, D.R.: Quantum discord, local operations, and Maxwell’s demons. Phys. Rev. A 81, 062103 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  27. Paula, F.M., de Oliveira, T.R., Sarandy, M.S.: Geometric quantum discord through the Schatten 1-norm. Phys. Rev. A 87, 064101 (2013)

    Article  ADS  Google Scholar 

  28. Spehner, D., Orszag, M.: Geometric quantum discord with Bures distance. New J. Phys. 15, 103001 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  29. Spehner, D., Orszag, M.: Geometric quantum discord with Bures distance: the qubit case. J. Phys. A Math. Theor. 47, 035302 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  30. Jakóbczyk, L.: Spontaneous emission and quantum discord: comparison of Hilbert–Schmidt and trace distance discord. Phys. Lett. A 378, 3248–3253 (2014)

    Article  ADS  Google Scholar 

  31. Kheirollahi, A., Akhtarshenas, S.J., Mohammadi, H.: Quantifying nonclassicality of correlations based on the concept of nondisruptive local state identification. Quantum Inf. Process 15, 1585 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  32. Luo, S., Fu, S.: Hybrid potential model of the \(\alpha \)-cluster structure of 212Po. Phys. Rev. A 82, 034302 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  33. Guo, Y.: Non-commutativity measure of quantum discord. Sci. Rep. 6, 25241 (2016)

    Article  ADS  Google Scholar 

  34. Majtey, A.P., Bussandri, D.G., Ossan, T.G., Lamberti, P.W., Valdés-Hernández, A.: Problem of quantifying quantum correlations with non-commutative discord. Quantum Inf. Process 16, 226 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  35. Brodutch, A., Modi, K.: Criteria for measures of quantum correlations. Quantum Inf. Comput. 12, 721–742 (2012)

    MathSciNet  MATH  Google Scholar 

  36. Adesso, G., Bromley, T.R., Cianciaruso, M.: Measures and applications of quantum correlations. J. Phys. A Math. Theor. 49, 473001 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  37. Streltsov, A., Kampermann, H., Bruß, D.: Behavior of quantum correlations under local noise. Phys. Rev. Lett. 107, 170502 (2011)

    Article  ADS  Google Scholar 

  38. Hu, X., Fan, H., Zhou, D.L., Liu, W.M.: Necessary and sufficient conditions for local creation of quantum correlation. Phys. Rev. A. 85, 032102 (2012)

    Article  ADS  Google Scholar 

  39. Guo, Y., Hou, J.: Necessary and sufficient conditions for the local creation of quantum discord. J. Phys. A Math. Theor. 46, 155301 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  40. Ruskai, M.B., Szarek, S., Werner, E.: An analysis of completely-positive trace-preserving maps on M2. Linear Algebra Appl. 347, 159 (2002)

    Article  MathSciNet  Google Scholar 

  41. Bromley, T.R., Silva, I.A., Oncebay-Segura, C.O., Soares-Pinto, D.O.R., de Azevedo, E., Tufarelli, T., Adesso, G.: There is more to quantum interferometry than entanglement. Phys. Rev. A 95, 052313 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

D. B. and A. P. M. acknowledge the Argentinian agency SeCyT-UNC and CONICET for financial support. D. B. has a fellowship from CONICET. A. V. H. gratefully acknowledges financial support from DGAPA, UNAM through project PAPIIT IA101918.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Valdés-Hernández.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bussandri, D.G., Majtey, A.P. & Valdés-Hernández, A. Non-commutative measure of quantum correlations under local operations. Quantum Inf Process 18, 47 (2019). https://doi.org/10.1007/s11128-018-2154-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-2154-9

Keywords

Navigation