Skip to main content

Advertisement

Log in

Insight into the mechanisms of enhanced production of valuable terpenoids by arbuscular mycorrhiza

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

Terpenoids, in addition to being essential for plant growth and survival, are commercially valued for their medicinal properties, ecological significance, and used as flavors and fragrances. Prospective role of arbuscular mycorrhiza (AM) symbiosis in improving the accumulation of secondary metabolites especially terpenoids has gained recognition over the past two decades. Increased production of terpenoids in aboveground parts of AM-colonized medicinal plants has extensively been described. Understanding the mechanisms underpinning increase in accumulation of specific terpenoids in AM plants is important for obtaining higher yield and to improve the potential of AM in sustainable cultivation of plants harboring these compounds. Enhanced phosphorus uptake in the mycorrhizal plants has been largely credited for the increase in terpenoid production. However, recent findings have suggested AM mediated manipulation of morphology, biochemistry and gene transcription in plants. The review provides an update on recent findings in the field of AM research with a special focus on production of pharmaceutically important terpenoids. Several points are highlighted for future research to elucidate probable mechanisms underlying increase in terpenoids in mycorrhizal plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Akiyama K, Hayashi H (2002) Arbuscular mycorrhizal fungus-promoted accumulation of two new triterpenoids in cucumber roots. Biosci Biotechnol Biochem 66(4):762–769

    Article  CAS  PubMed  Google Scholar 

  • Allen MF, Moore TS Jr, Christensen M (1980) Phytohormone changes in Bouteloua gracilis infected by vesicular-arbuscular mycorrhizae: I. Cytokinin increases in the host plant. Can J Bot 58(3):371–374

    Article  CAS  Google Scholar 

  • Allen MF, Moore TS Jr, Christensen M (1982) Phytohormone changes in Bouteloua gracilis infected by vesicular-arbuscular mycorrhizae. II. Altered levels of gibberellin-like substances and abscisic acid in the host plant. Can J Bot 60(4):468–471

    Article  CAS  Google Scholar 

  • An L, Zhou Z, Yan A, Gan Y (2011) Progress on trichome development regulated by phytohormone signaling. Plant Signal Behav 6(12):1959–1962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Araim G, Saleem A, Arnason JT, Charest C (2009) Root colonization by an arbuscular mycorrhizal (AM) fungus increases growth and secondary metabolism of purple coneflower, Echinacea purpurea (L.) Moench. J Agric Food Chem 57(6):2255–2258

    Article  CAS  PubMed  Google Scholar 

  • Arpana J, Bagyaraj DJ (2007) Response of kalmegh to an arbuscular mycorrhizal fungus and a plant growth promoting rhizomicroorganism at two levels of phosphorus fertilizer. Am-Euras J Agric Environ Sci 2:33–38

    Google Scholar 

  • Arpana J, Bagyaraj DJ, Prakasa Rao EVS, Parameswaran TN, Abdul Rahiman BA (2008) Symbiotic response of patchouli [Pogostemon cablin (Blanco) Benth.] to different arbuscular mycorrhizal fungi. Adv Environ Biol 2(1):20–24

    CAS  Google Scholar 

  • Asensio D, Rapparini F, Peñuelas J (2012) AM fungi root colonization increases the production of essential isoprenoids vs. nonessential isoprenoids especially under drought stress conditions or after jasmonic acid application. Phytochemistry 77:149–161

    Article  CAS  PubMed  Google Scholar 

  • Awasthi A, Bharti N, Nair P, Singh R, Shukla AK, Gupta MM, Darokar MP, Kalra A (2011) Synergistic effect of Glomus mosseae and nitrogen fixing Bacillus subtilis strain Daz26 on artemisinin content in Artemisia annua L. Appl Soil Ecol 49:125–130

    Article  Google Scholar 

  • Bago B, Philip E, Pfeffer PE, Shachar-Hill Y (2000) Carbon metabolism and transport in arbuscular mycorrhizas. Plant Physiol 124(3):949–958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartram S, Jux A, Gleixner G, Boland W (2006) Dynamic pathway allocation in early terpenoid biosynthesis of stress-induced lima bean leaves. Phytochemistry 67(15):1661–1672

    Article  CAS  PubMed  Google Scholar 

  • Behnam S, Farzaneh M, Ahmadzadeh M, Tehrani AS (2006) Composition and antifungal activity of essential oils of Mentha piperita and Lavendula angustifolia on post-harvest phytopathogens. Commun Agric Appl Biol Sci 71(3 Pt B):1321–1326

    CAS  PubMed  Google Scholar 

  • Binet MN, Van Tuinen D, Deprêtre N, Koszela N, Chambon C, Gianinazzi S (2011) Arbuscular mycorrhizal fungi associated with Artemisia umbelliformis Lam, an endangered aromatic species in Southern French Alps, influence plant P and essential oil contents. Mycorrhiza 21(6):523–535

    Article  CAS  PubMed  Google Scholar 

  • Björkman C, Larsson S, Gref R (1991) Effects of nitrogen fertilization on pine needle chemistry and sawfly performance. Oecologia 86(2):202–209

    Article  PubMed  Google Scholar 

  • Blanch JS, Peñuelas J, Llusià J (2007) Sensitivity of terpene emissions to drought and fertilization in terpene-storing Pinus halepensis and non-storing Quercus ilex. Physiol Plant 131(2):211–225

    CAS  PubMed  Google Scholar 

  • Bryla DR, Eissenstat DM (2005) Respiratory costs of mycorrhizal associations. In: Lambers H, Ribas-Carbo M (eds) Plant respiration, 3rd edn. Springer, Netherlands, pp 207–224

    Chapter  Google Scholar 

  • Burney OT, Davis AS, Jacobs DF (2012) Phenology of foliar and volatile terpenoid production for Thuja plicata families under differential nutrient availability. Environ Exp Bot 77:44–52

    Article  CAS  Google Scholar 

  • Cao B, Dang QL, Yü X, Zhang S (2008) Effects of [CO2] and nitrogen on morphological and biomass traits of white birch (Betula papyrifera) seedlings. Forest Ecol Manag 254(2):217–224

    Article  Google Scholar 

  • Chappell J, Wolf F, Proulx J, Cuellar R, Saunders C (1995) Is the reaction catalyzed by 3-hydroxy-3-methylglutaryl coenzyme a reductase a rate-limiting step for isoprenoid biosynthesis in plants? Plant Physiol 109(4):1337–1343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaudhary V, Kapoor R, Bhatnagar AK (2008) Effectiveness of two arbuscular mycorrhizal fungi on concentrations of essential oil and artemisinin in three accessions of Artemisia annua L. Appl Soil Ecol 40(1):174–181

    Article  Google Scholar 

  • Copetta A, Lingua G, Berta G (2006) Effects of three AM fungi on growth, distribution of glandular hairs, and essential oil production in Ocimum basilicum L. var. Genovese. Mycorrhiza 16(7):485–494

    Article  CAS  PubMed  Google Scholar 

  • Covello PS, Teoh KH, Polichuk DR, Reed DW, Nowak G (2007) Functional genomics and the biosynthesis of artemisinin. Phytochemistry 68(14):1864–1871

    Article  CAS  PubMed  Google Scholar 

  • Dave S, Das J, Tarafdar JC (2011) Effect of vesicular arbuscular mycorrhizae on growth and saponin accumulation in Chlorophytum borivilianum. Sci Asia 37:165–169

    Article  CAS  Google Scholar 

  • El-Sayed M, Verpoorte R (2007) Catharanthus terpenoid indole alkaloids: biosynthesis and regulation. Phytochem Rev 6(2–3):277–305

    Article  CAS  Google Scholar 

  • Evelin H, Kapoor R, Giri B (2009) Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann Bot 104(7):1263–1280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evelin H, Giri B, Kapoor R (2013) Ultrastructural evidence for AMF mediated salt stress mitigation in Trigonella foenum-graecum. Mycorrhiza 23(1):71–86

    Article  CAS  PubMed  Google Scholar 

  • Farahani A, Lebaschi H, Hussein M, Hussein SA, Reza VA, Jahanfar D (2013) Effects of arbuscular mycorrhizal fungi, different levels of phosphorus and drought stress on water use efficiency, relative water content and proline accumulation rate of Coriander (Coriandrum sativum L.). J Med Plants Res 2(6):125-131

  • Feddermann N, Finlay R, Boller T, Elfstrand M (2010) Functional diversity in arbuscular mycorrhiza—the role of gene expression, phosphorus nutrition and symbiotic efficiency. Fungal Ecol 3(1):1–8

    Article  Google Scholar 

  • Fester T, Maier W, Strack D (1999) Accumulation of secondary compounds in barley and wheat roots in response to inoculation with an arbuscular mycorrhizal fungus and co-inoculation with rhizosphere bacteria. Mycorrhiza 8(5):241–246

    Article  CAS  Google Scholar 

  • Fester T, Schmidt D, Lohse S, Walter MH, Giuliano G, Bramley PM, Fraser PD, Hause B, Strack D (2002) Stimulation of carotenoid metabolism in arbuscular mycorrhizal roots. Planta 216(1):148–154

    Article  CAS  PubMed  Google Scholar 

  • Fester T, Fetzer I, Buchert S, Lucas R, Rillig MC, Härtig C (2011) Towards a systemic metabolic signature of the arbuscular mycorrhizal interaction. Oecologia 167(4):913–924

    Article  PubMed  Google Scholar 

  • Finlay RD (2008) Ecological aspects of mycorrhizal symbiosis: with special emphasis on the functional diversity of interactions involving the extraradical mycelium. J Exp Bot 59(5):1115–1126

    Article  CAS  PubMed  Google Scholar 

  • Floß DS, Hause B, Lange PR, Küster H, Strack D, Walter MH (2008) Knock-down of the MEP pathway isogene 1-deoxy-D-xylulose 5-phosphate synthase 2 inhibits formation of arbuscular mycorrhiza-induced apocarotenoids, and abolishes normal expression of mycorrhiza-specific plant marker genes. Plant J 56(1):86–100

    Article  PubMed  CAS  Google Scholar 

  • Geneva MP, Stancheva IV, Boychinova MM, Mincheva NH, Yonova PA (2010) Effects of foliar fertilization and arbuscular mycorrhizal colonization on Salvia officinalis L. growth, antioxidant capacity, and essential oil composition. J Sci Food Agric 90(4):696–702

    CAS  PubMed  Google Scholar 

  • Gershenzon J (1994) Metabolic costs of terpenoid accumulation in higher plants. J Chem Ecol 20(6):1281–1328

    Article  CAS  PubMed  Google Scholar 

  • Giovannetti M, Avio L, Barale R, Ceccarelli N, Cristofani R, Iezzi A, Mignolli F, Picciarelli P, Pinto B, Reali D, Sbrana C (2012) Nutraceutical value and safety of tomato fruits produced by mycorrhizal plants. Br J Nutr 107(02):242–251

    Article  CAS  PubMed  Google Scholar 

  • Gouinguené SP, Turlings TC (2002) The effects of abiotic factors on induced volatile emissions in corn plants. Plant Physiol 129(3):1296–1307

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gupta ML, Prasad A, Ram M, Kumar S (2002) Effect of the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus fasciculatum on the essential oil yield related characters and nutrient acquisition in the crops of different cultivars of menthol mint (Mentha arvensis) under field conditions. Bioresour Technol 81(1):77–79

    Article  CAS  PubMed  Google Scholar 

  • Gutjahr C (2014) Phytohormone signaling in arbuscular mycorhiza development. Curr Opin Plant Biol 20:26–34

    Article  CAS  PubMed  Google Scholar 

  • Hans J, Hause B, Strack D, Walter MH (2004) Cloning, characterization, and immunolocalization of a mycorrhiza-inducible 1-deoxy-d-xylulose 5-phosphate reductoisomerase in arbuscule-containing cells of maize. Plant Physiol 134(2):614–624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harrier LA, Watson CA (2004) The potential role of arbuscular mycorrhizal (AM) fungi in the bioprotection of plants against soil-borne pathogens in organic and/or other sustainable farming systems. Pest Manag Sci 60(2):149–157

    Article  CAS  PubMed  Google Scholar 

  • Harrison MJ (2005) Signaling in the arbuscular mycorrhizal symbiosis. Annu Rev Microbiol 59:19–42

    Article  CAS  PubMed  Google Scholar 

  • Hart M, Ehret DL, Krumbein A, Leung C, Murch S, Turi C, Franken P (2015) Inoculation with arbuscular mycorrhizal fungi improves the nutritional value of tomatoes. Mycorrhiza 25(5):359–376

    Article  CAS  PubMed  Google Scholar 

  • Hause B, Maier W, Miersch O, Kramell R, Strack D (2002) Induction of jasmonate biosynthesis in arbuscular mycorrhizal barley roots. Plant Physiol 130(3):1213–1220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hazzoumi Z, Moustakime Y, Joutei KA (2015) Effect of arbuscular mycorrhizal fungi (AMF) and water stress on growth, phenolic compounds, glandular hairs, and yield of essential oil in basil (Ocimum gratissimum L). Chem Biol Technol Agric 2(1):1–11

    Article  Google Scholar 

  • Heldt HW (2005) A large diversity of isoprenoids has multiple functions in plant metabolism. In: Academic Elsevier (ed) Plant biochemistry, third. Press, California, pp 413–433

    Chapter  Google Scholar 

  • Herms DA, Mattson WJ (1992) The dilemma of plants: to grow or defend. Q Rev Biol 67(3):283–335

    Article  Google Scholar 

  • Hodge A, Fitter AH (2010) Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling. Proc Natl Acad Sci 107(31):13754–13759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hofmeyer PV, Seymour RS, Kenefic LS (2010) Production ecology of Thuja occidentalis. Can J For Res 40(6):1155–1164

    Article  Google Scholar 

  • Jakobsen I, Abbott LK, Robson AD (1992) External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum L. New Phytol 120(3):371–380

    Article  CAS  Google Scholar 

  • Jurkiewicz A, Ryszka P, Anielska T, Waligórski P, Białońska D, Góralska K, Tsimilli-Michael M, Turnau K (2010) Optimization of culture conditions of Arnica montana L.: effects of mycorrhizal fungi and competing plants. Mycorrhiza 20(5):293–306

    Article  PubMed  Google Scholar 

  • Kainulainen P, Holopainen J, Palomäki V, Holopainen T (1996) Effects of nitrogen fertilization on secondary chemistry and ectomycorrhizal state of scots pine seedlings and on growth of grey pine aphid. J Chem Ecol 22(4):617–636

    Article  CAS  PubMed  Google Scholar 

  • Kapoor R, Giri B, Mukerji KG (2002a) Glomus macrocarpum: a potential bioinoculant to improve essential oil quality and concentration in Dill (Anethum graveolens L.) and Carum (Trachyspermum ammi (Linn.) Sprague). World J Microbiol Biotechnol 18(5):459–463

    Article  CAS  Google Scholar 

  • Kapoor R, Giri B, Mukerji KG (2002b) Mycorrhization of coriander (Coriandrum sativum L.) to enhance the concentration and quality of essential oil. J Sci Food Agric 82(4):339–342

    Article  CAS  Google Scholar 

  • Kapoor R, Giri B, Mukerji KG (2004) Improved growth and essential oil yield and quality in Foeniculum vulgare mill on mycorrhizal inoculation supplemented with P-fertilizer. Bioresour Technol 93(3):307–311

    Article  CAS  PubMed  Google Scholar 

  • Kapoor R, Chaudhary V, Bhatnagar AK (2007) Effects of arbuscular mycorrhiza and phosphorus application on artemisinin concentration in Artemisia annua L. Mycorrhiza 17(7):581–587

    Article  CAS  PubMed  Google Scholar 

  • Karagiannidis N, Thomidis T, Lazari D, Panou-Filotheou E, Karagiannidou C (2011) Effect of three Greek arbuscular mycorrhizal fungi in improving the growth, nutrient concentration, and production of essential oils of oregano and mint plants. Sci Hort 129(2):329–334

    Article  CAS  Google Scholar 

  • Karagiannidis N, Thomidis T, Panou-Filotheou E (2012) Effects of Glomus lamellosum on growth, essential oil production and nutrients uptake in selected medicinal plants. J Agr Sci 4(3):137

    Google Scholar 

  • Khaosaad T, Vierheilig H, Nell M, Zitterl-Eglseer K, Novak J (2006) Arbuscular mycorrhiza alter the concentration of essential oils in oregano (Origanum sp., Lamiaceae). Mycorrhiza 16(6):443–446

    Article  CAS  PubMed  Google Scholar 

  • Khaosaad T, Krenn L, Medjakovic S, Ranner A, Lössl A, Nell M, Jungbauer A, Vierheilig H (2008) Effect of mycorrhization on the isoflavone content and the phytoestrogen activity of red clover. J Plant Physiol 165:1161–1167

    Article  CAS  PubMed  Google Scholar 

  • King DJ, Gleadow RM, Woodrow IE (2004) Terpene deployment in Eucalyptus polybractea; relationships with leaf structure, environmental stresses, and growth. Funct Plant Biol 31(5):451–460

    Article  CAS  Google Scholar 

  • Klingner A, Bothe H, Wray V, Marner FJ (1995) Identification of a yellow pigment formed in maize roots upon mycorrhizal colonization. Phytochemistry 38(1):53–55

    Article  CAS  Google Scholar 

  • Knotz J, Coolbaugh RC, West CA (1977) Regulation of the biosynthesis of ent-kaurene from mevalonate in the endosperm of immature Marah macrocarpus seeds by adenylate energy charge. Plant Physiol 60(1):81–85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi K, Awai K, Nakamura M, Nagatani A, Masuda T, Ohta H (2009) Type-B monogalactosyldiacylglycerol synthases are involved in phosphate starvation-induced lipid remodeling, and are crucial for low-phosphate adaptation. Plant J 57(2):322–331

    Article  CAS  PubMed  Google Scholar 

  • Ku CM, Lin JY (2013) Anti-inflammatory effects of 27 selected terpenoid compounds tested through modulating Th1/Th2 cytokine secretion profiles using murine primary splenocytes. Food Chem 141(2):1104–1113

    Article  CAS  PubMed  Google Scholar 

  • Kumar SR, Nisha MC, Prabu PC, Wondimu T, Selvaraj T (2008) Interaction between Glomus geosporum, Azotobacter chroococcum and Bacillus coagulans and their influence on growth and nutrition of Melia azaedarach L. Turk J Biol 33:109–114

    Google Scholar 

  • Lerdau M, Gershenzon J (1997) Allocation theory and chemical defense. In: Bazzaz FA, Grace J (eds) Plant resource allocation. Academic Press, San Diego, pp 265–277

    Chapter  Google Scholar 

  • Lermen C, Morelli F, Gazim ZC, da Silva AP, Gonçalves JE, Dragunski DC, Alberton O (2015) Essential oil content and chemical composition of Cymbopogon citratus inoculated with arbuscular mycorrhizal fungi under different levels of lead. Ind Crops Prod 76:734–738

    Article  CAS  Google Scholar 

  • Liu S, Zhong JJ (1998) Phosphate effect on production of ginseng saponin and polysaccharide by cell suspension cultures of Panax ginseng and Panax quinquefolium. Process Biochem 33(1):69–74

    Article  CAS  Google Scholar 

  • Liu Y, Wang H, Ye HC, Li GF (2005) Advances in the plant isoprenoid biosynthesis pathway and its metabolic engineering. J Integr Plant Biol 47(7):769–782

    Article  CAS  Google Scholar 

  • Liu J, Wu L, Wei S, Xiao X, Su C, Jiang P, Song Z, Wang T, Yu Z (2007) Effects of arbuscular mycorrhizal fungi on the growth, nutrient uptake and glycyrrhizin production of licorice (Glycyrrhiza uralensis Fisch). Plant Growth Regul 52(1):29–39

    Article  CAS  Google Scholar 

  • Maes L, Goossens A (2010) Hormone-mediated promotion of trichome initiation in plants is conserved but utilizes species and trichome-specific regulatory mechanisms. Plant Signal Behav 5(2):205–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maes L, Inzé D, Goossens A (2008) Functional specialization of the TRANSPARENT TESTA GLABRA1 network allows differential hormonal control of laminal and marginal trichome initiation in Arabidopsis rosette leaves. Plant Physiol 148(3):1453–1464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maes L, Van Nieuwerburgh FC, Zhang Y, Reed DW, Pollier J, Vande Casteele SR, Inzé D, Covello PS, Deforce DL, Goossens A (2011) Dissection of the phytohormonal regulation of trichome formation and biosynthesis of the antimalarial compound artemisinin in Artemisia annua plants. New Phytol 189(1):176–189

    Article  CAS  PubMed  Google Scholar 

  • Maier W, Peipp H, Schmidt J, Wray V, Strack D (1995) Levels of a terpenoid glycoside (blumenin) and cell wall-bound phenolics in some cereal mycorrhizas. Plant Physiol 109(2):465–470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maier W, Hammer K, Dammann U, Schulz B, Strack D (1997) Accumulation of sesquiterpenoid cyclohexenone derivatives induced by an arbuscular mycorrhizal fungus in members of the Poaceae. Planta 202(1):36–42

    Article  CAS  Google Scholar 

  • Maier W, Schneider B, Strack D (1998) Biosynthesis of sesquiterpenoid cyclohexenone derivatives in mycorrhizal barley roots proceeds via the glyceraldehyde 3-phosphate/pyruvate pathway. Tetrahedron Lett 39(7):521–524

    Article  CAS  Google Scholar 

  • Maier W, Schmidt J, Wray V, Walter MH, Strack D (1999) The arbuscular mycorrhizal fungus, Glomus intraradices, induces the accumulation of cyclohexenone derivatives in tobacco roots. Planta 207(4):620–623

    Article  CAS  Google Scholar 

  • Maier W, Schmidt J, Nimtz M, Wray V, Strack D (2000) Secondary products in mycorrhizal roots of tobacco and tomato. Phytochemistry 54(5):473–479

    Article  CAS  PubMed  Google Scholar 

  • Malik AA, Ahmad J, Suryapani S, Abdin MZ, Ali M (2012) Effect of inorganic and biological fertilizer treatments on essential oil composition of Ruta graveolens L. J Herbs Spices Med Plants 18(2):191–202

    Article  CAS  Google Scholar 

  • Mandal S, Evelin H, Giri B, Singh VP, Kapoor R (2013) Arbuscular mycorrhiza enhances the production of stevioside and rebaudioside-A in Stevia rebaudiana via nutritional and non-nutritional mechanisms. Appl Soil Ecol 72:187–194

    Article  Google Scholar 

  • Mandal S, Upadhyay S, Singh VP, Kapoor R (2015a) Enhanced production of steviol glycosides in mycorrhizal plants: a concerted effect of arbuscular mycorrhizal symbiosis on transcription of biosynthetic genes. Plant Physiol Biochem 89:100–106

    Article  CAS  PubMed  Google Scholar 

  • Mandal S, Upadhyay S, Wajid S, Ram M, Jain DC, Singh VP, Abdin MZ, Kapoor R (2015b) Arbuscular mycorrhiza increase artemisinin accumulation in Artemisia annua by higher expression of key biosynthesis genes via enhanced jasmonic acid levels. Mycorrhiza 25(5):345–357

    Article  CAS  PubMed  Google Scholar 

  • Martin C, Zhang Y, Tonelli C, Petroni K (2013) Plants, diet, and health. Ann Rev Plant Biol 64:19–46

    Article  CAS  Google Scholar 

  • Matsumi R, Atomi H, Driessen AJ, van der Oost J (2011) Isoprenoid biosynthesis in Archaea–biochemical and evolutionary implications. Res Microbiol 162(1):39–52

    Article  CAS  PubMed  Google Scholar 

  • McGarvey DJ, Croteau R (1995) Terpenoid metabolism. Plant Cell 7(7):1015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miransari M (2010) Contribution of arbuscular mycorrhizal symbiosis to plant growth under different types of soil stress. Plant Biol 12(4):563–569

    CAS  PubMed  Google Scholar 

  • Miransari M (2011) Arbuscular mycorrhizal fungi and nitrogen uptake. Arch Microbiol 193(2):77–81

    Article  CAS  PubMed  Google Scholar 

  • Misra A, Srivastava NK, Srivastava NK, Srivastava AK (2010) Influence of gibberellic acid and arbuscular mycorrhizae inoculation on carbon metabolism, growth, and diterpene accumulation in Taxus wallichiana Zuccarini var. mairei. J Biophys Struct Biol 2(2):022–027

    CAS  Google Scholar 

  • Morone-Fortunato I, Avato P (2008) Plant development and synthesis of essential oils in micropropagated and mycorrhiza inoculated plants of Origanum vulgare L. ssp. hirtum (Link) Ietswaart. Plant Cell, Tissue Organ Cult 93(2):139–149

    Article  CAS  Google Scholar 

  • Muñoz-Bertomeu J, Arrillaga I, Ros R, Segura J (2006) Up-regulation of 1-deoxy-D-xylulose-5-phosphate synthase enhances production of essential oils in transgenic spike lavender. Plant Physiol 142(3):890–900

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nagegowda DA (2010) Plant volatile terpenoid metabolism: biosynthetic genes, transcriptional regulation and subcellular compartmentation. FEBS Lett 584(14):2965–2973

    Article  CAS  PubMed  Google Scholar 

  • Nell M, Voetsch M, Vierheilig H, Steinkellner S, Zitterl-Eglseer K, Franz C, Novak J (2009) Effect of phosphorus uptake on growth and secondary metabolites of garden sage (Salvia officinalis L.). J Sci Food Agric 89(6):1090–1096

    Article  CAS  Google Scholar 

  • Nell M, Wawrosch C, Steinkellner S, Vierheilig H, Kopp B, Losse A, Franz C, Novak J, Zittere – Eyeseer K (2010) Root colonization by symbiotic arbuscular mycorrhizal fungi increases sesquiterpenic acid concentration in Valeriana officinalis L. Planta Med 76:393–398

    Article  CAS  PubMed  Google Scholar 

  • Niinemets Ü, Seufert G, Steinbrecher R, Tenhunen JD (2002) A model coupling foliar monoterpene emissions to leaf photosynthetic characteristics in Mediterranean evergreen Quercus species. New Phytol 153(2):257–275

    Article  CAS  Google Scholar 

  • Nouri E, Breuillin-Sessoms F, Feller U, Reinhardt D (2014) Phosphorus and nitrogen regulate arbuscular mycorrhizal symbiosis in Petunia hybrida. PLoS ONE 9(3):e90841

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nurzynska-Wierdak R (2013) Does mineral fertilization modify essential oil content and chemical composition in medicinal plants? Acta Sci Pol Hortorum Cultus 12(5):3–16

    Google Scholar 

  • Okada K (2011) The biosynthesis of isoprenoids and the mechanisms regulating it in plants. Biosci Biotechnol Biochem 75(7):1219–1225

    Article  CAS  PubMed  Google Scholar 

  • Oksman-Caldentey KM, Inzé D (2004) Plant cell factories in the post-genomic era: new ways to produce designer secondary metabolites. Trends Plant Sci 9(9):433–440

    Article  CAS  PubMed  Google Scholar 

  • Ormeno E, Fernandez C (2012) Effect of soil nutrient on production and diversity of volatile terpenoids from plants. Curr Bioact Compd 8(1):71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol 6(10):763–775

    Article  CAS  PubMed  Google Scholar 

  • Peñuelas J, Staudt M (2010) BVOCs and global change. Trends Plant Sci 15(3):133–144

    Article  PubMed  CAS  Google Scholar 

  • Prasad A, Kumar S, Pandey A, Chand S (2012) Microbial and chemical sources of phosphorus supply modulate the yield and chemical composition of essential oil of rose-scented geranium (Pelargonium species) in sodic soils. Biol Fertil Soils 48(1):117–122

    Article  CAS  Google Scholar 

  • Rapparini F, Llusià J, Peñuelas J (2008) Effect of arbuscular mycorrhizal (AM) colonization on terpene emission and content of Artemisia annua L. Plant Biol 10(1):108–122

    Article  CAS  PubMed  Google Scholar 

  • Rasouli-Sadaghiani M, Hassani A, Barin M, Danesh YR, Sefidkon F (2010) Effects of arbuscular mycorrhizal (AM) fungi on growth, essential oil production and nutrients uptake in basil. J Med Plants Res 4(21):2222–2228

    CAS  Google Scholar 

  • Redecker D, Raab P (2006) Phylogeny of the Glomeromycota (arbuscular mycorrhizal fungi): recent developments and new gene markers. Mycologia 98(6):885–895

    Article  PubMed  Google Scholar 

  • Richard SB, Ferrer JL, Bowman ME, Lillo AM, Tetzlaff CN, Cane DE, Noel JP (2002) Structure and mechanism of 2-C-methyl-d-erythritol 2,4-cyclodiphosphate synthase. An enzyme in the mevalonate-independent isoprenoid biosynthetic pathway. J Biol Chem 277(10):8667–8672

    Article  CAS  PubMed  Google Scholar 

  • Ringer KL, Davis EM, Croteau R (2005) Monoterpene metabolism. Cloning, expression, and characterization of (−)-isopiperitenol/(−)-carveol dehydrogenase of peppermint and spearmint. Plant Physiol 137(3):863–872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodríguez-Concepción M (2006) Early steps in isoprenoid biosynthesis: multilevel regulation of the supply of common precursors in plant cells. Phytochem Rev 5(1):1–15

    Article  CAS  Google Scholar 

  • Ruiz-Lozano JM, Porcel R, Azcón C, Aroca R (2012) Regulation by arbuscular mycorrhizae of the integrated physiological response to salinity in plants: new challenges in physiological and molecular studies. J Exp Bot 63(11):4033–4034

    Article  CAS  PubMed  Google Scholar 

  • Rydlová J, Jelínková M, Karel Dušek K, Dušková E, Miroslav Vosátka M, Püschel D (2016) Arbuscular mycorrhiza differentially affects synthesis of essential oils in coriander and dill. Mycorrhiza 26:123–131

    Article  PubMed  CAS  Google Scholar 

  • Sacchettini JC, Poulter CD (1997) Creating isoprenoid diversity. Science 277(5333):1788–1789

    Article  CAS  PubMed  Google Scholar 

  • Sailo GL, Bagyaraj DJ (2005) Influence of different AM-fungi on the growth, nutrition and forskolin content of Coleus forskohlii. Mycol Res 109(7):795–798

    Article  CAS  PubMed  Google Scholar 

  • Salvioli A, Bonfante P (2013) Systems biology and “omics” tools: a cooperation for next-generation mycorrhizal studies. Plant Sci 203:107–114

    Article  PubMed  CAS  Google Scholar 

  • Salvioli A, Zouari I, Chalot M, Bonfante P (2012) The arbuscular mycorrhizal status has an impact on the transcriptome profile and amino acid composition of tomato fruit. BMC Plant Biol 12(1):1

    Article  CAS  Google Scholar 

  • Sasanelli N, Anton A, Takacs T, D’Addabbo T, Biro I, Malov X (2009) Influence of arbuscular mycorrhizal fungi on the nematicidal properties of leaf extracts of Thymus vulgaris L. Helminthologia 46(4):230–240

    Article  Google Scholar 

  • Schüßler A, Schwarzott D, Walker C (2001) A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res 105(12):1413–1421

    Article  Google Scholar 

  • Schweiger R, Müller C (2015) Leaf metabolome in arbuscular mycorrhizal symbiosis. Curr Opin Plant Biol 26:120–126

    Article  CAS  PubMed  Google Scholar 

  • Schweiger R, Baier MC, Persicke M, Müller C (2014) High specificity in plant leaf metabolic responses to arbuscular mycorrhiza. Nat Commun 5:3886–3896

    Article  CAS  PubMed  Google Scholar 

  • Seigler DS (1998) Plant secondary metabolism, 1st edn. Kluwer Academic Publishers, Norwell

    Book  Google Scholar 

  • Selvaraj T, Rajeshkumar S, Nisha MC, Wondimu L, Tesso M (2008) Effect of Glomus mosseae and plant growth promoting rhizomicroorganisms (PGPR’s) on growth, nutrients and content of secondary metabolites in Begonia malabarica Lam. Maejo. Int J Sci Technol 2(3):516–525

    CAS  Google Scholar 

  • Shaul-Keinan O, Gadkar V, Ginzberg I, Grünzweig JM, Chet I, Elad Y, Wininger S, Belausov E, Eshed Y, Atzmon N, Ben-Tal Y (2002) Hormone concentrations in tobacco roots change during arbuscular mycorrhizal colonization with Glomus intraradices. New Phytol 154(2):501–507

    Article  CAS  Google Scholar 

  • Shrivastava G, Ownley BH, Augé RM, Toler H, Dee M, Vu A, Köllner TG, Chen F (2015) Colonization by arbuscular mycorrhizal and endophytic fungi enhanced terpene production in tomato plants and their defense against a herbivorous insect. Symbiosis 65(2):65–74

    Article  CAS  Google Scholar 

  • Silva VC, Alves PAC, de Oliveira RA, de Jesus RM, Costa LCB, Gross E (2014) Influence of arbuscular mycorrhizal fungi on growth, mineral composition and production of essential oil in Mentha × piperita L. var. citrata (Ehrh.) Briq. under two phosphorus levels. J Med Plants Res 8(45):1321–1332

    Article  Google Scholar 

  • Siwko ME, Marrink SJ, de Vries AH, Kozubek A, Uiterkamp AJS, Mark AE (2007) Does isoprene protect plant membranes from thermal shock? A molecular dynamics study. Bba Biomembr 1768(2):198–206

    Article  CAS  Google Scholar 

  • Smith SE, Gianinazzi-Pearson V (1988) Physiological interactions between symbionts in vesicular-arbuscular mycorrhizal plants. Annu Rev Plant Physiol Plant Mol Biol 39(1):221–244

    Article  CAS  Google Scholar 

  • Smith SE, Read DJ (eds) (1997) Mycorrhizal symbiosis. Academic Press, London

    Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 4th edn. Academic, London

    Google Scholar 

  • Steinbacher S, Kaiser J, Wungsintaweekul J, Hecht S, Eisenreich W, Gerhardt S, Bacher A, Rohdich F (2002) Structure of 2C-methyl-d-erythritol-2,4-cyclodiphosphate synthase involved in mevalonate-independent biosynthesis of isoprenoids. J Mol Biol 316(1):79–88

    Article  CAS  PubMed  Google Scholar 

  • Strack D, Fester T (2006) Isoprenoid metabolism and plastid reorganization in arbuscular mycorrhizal roots. New Phytol 172(1):22–34

    Article  CAS  PubMed  Google Scholar 

  • Tholl D (2006) Terpene synthases and the regulation, diversity and biological roles of terpene metabolism. Curr Opin Plant Biol 9(3):297–304

    Article  CAS  PubMed  Google Scholar 

  • Tian C, Kasiborski B, Koul R, Lammers PJ, Bücking H, Shachar-Hill Y (2010) Regulation of the nitrogen transfer pathway in the arbuscular mycorrhizal symbiosis: gene characterization and the coordination of expression with nitrogen flux. Plant Physiol 153(3):1175–1187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torelli A, Trotta A, Acerbi L, Arcidiacono G, Berta G, Branca C (2000) IAA and ZR content in leek (Allium porrum L.), as influenced by P nutrition and arbuscular mycorrhizae, in relation to plant development. Plant Soil 226(1):29–35

    Article  CAS  Google Scholar 

  • Toussaint JP (2007) Investigating physiological changes in the aerial parts of AM plants: what do we know and where should we be heading? Mycorrhiza 17(4):349–353

    Article  PubMed  Google Scholar 

  • Urcoviche RC, Gazim ZC, Dragunski DC, Barcellos FG, Alberton O (2015) Plant growth and essential oil content of Mentha crispa inoculated with arbuscular mycorrhizal fungi under different levels of phosphorus. Ind Crops Prod 67:103–107

    Article  CAS  Google Scholar 

  • van Schie CC, Haring MA, Schuurink RC (2007) Tomato linalool synthase is induced in trichomes by jasmonic acid. Plant Mol Biol 64(3):251–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Venkateshwaran M, Jayaraman D, Chabaud M, Genre A, Balloon AJ, Maeda J, Forshey K, den Os D, Kwiecien NW, Coon JJ, Barker DG (2015) A role for the mevalonate pathway in early plant symbiotic signaling. Proc Natl Acad Sci 112(31):9781–9786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Venkateswarlu B, Pirat M, Kishore N, Rasul A (2008) Mycorrhizal inoculation in neem (Azadirachta indica) enhances azadirachtin content in seed kernels. World J Microbiol Biotechnol 24(7):1243–1247

    Article  CAS  Google Scholar 

  • Walker AR, Davison PA, Bolognesi-Winfield AC, James CM, Srinivasan N, Blundell TL, Esch JJ, Marks MD, Gray JC (1999) The TRANSPARENT TESTA GLABRA1 locus, which regulates trichome differentiation and anthocyanin biosynthesis in Arabidopsis, encodes a WD40 repeat protein. Plant Cell 11(7):1337–1349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walter MH, Fester T, Strack D (2000) Arbuscular mycorrhizal fungi induce the non-mevalonate methylerythritol phosphate pathway of isoprenoid biosynthesis correlated with accumulation of the ‘yellow pigment’ and other apocarotenoids. Plant J 21(6):571–578

    Article  CAS  PubMed  Google Scholar 

  • Weisany W, Raei Y, Pertot I (2015) Changes in the essential oil yield and composition of dill (Anethum graveolens L.) as response to arbuscular mycorrhiza colonization and cropping system. Ind Crops Prod 77:295–306

    Article  CAS  Google Scholar 

  • Welling MT, Liu L, Rose TJ, Waters DL, Benkendorff K (2015) Arbuscular mycorrhizal fungi: effects on plant terpenoid accumulation. Plant Biol. doi:10.1111/plb.12408

    PubMed  Google Scholar 

  • Yadav A, Yadav K, Aggarwal A (2015) Impact of arbuscular mycorrhizal fungi with Trichoderma viride and Pseudomonas fluorescens on growth, yield and oil content in Helianthus annuus L. J Essent Oil Bear Plants 18(2):444–454

    Article  CAS  Google Scholar 

  • Zeng Y, Guo LP, Chen BD, Hao ZP, Wang JY, Huang LQ, Yang G, Cui XM, Yang L, Wu ZX, Chen ML (2013) Arbuscular mycorrhizal symbiosis and active ingredients of medicinal plants: current research status and prospectives. Mycorrhiza 23(4):253–265

    Article  CAS  PubMed  Google Scholar 

  • Zouari I, Salvioli A, Chialva M, Novero M, Miozzi L, Tenore GC, Bagnaresi P, Bonfante P (2014) From root to fruit: RNA-Seq analysis shows that arbuscular mycorrhizal symbiosis may affect tomato fruit metabolism. BMC Genom 15(1):1

    Article  CAS  Google Scholar 

  • Zubek S, Stojakowska A, Anielska T, Turnau K (2010) Arbuscular mycorrhizal fungi alter thymol derivative contents of Inula ensifolia L. Mycorrhiza 20(7):497–504

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial assistance (R&D grant) provided by the Research Council of University of Delhi, Delhi India. Garima Anand acknowledges University Grants Commision for fellowship as Junior Research Fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rupam Kapoor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kapoor, R., Anand, G., Gupta, P. et al. Insight into the mechanisms of enhanced production of valuable terpenoids by arbuscular mycorrhiza. Phytochem Rev 16, 677–692 (2017). https://doi.org/10.1007/s11101-016-9486-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-016-9486-9

Keywords

Navigation