Skip to main content
Log in

Stochastic investigation of the input uncertainty effects on the dynamic responses of constrained pipelines conveying fluids

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The dynamic response of a cantilevered pipe conveying fluid is investigated when several input parameters of the system are introduced to uncertainty. After the nonlinear equations of motions are derived, five input parameters are subject to a \(\pm \,5\%\) uncertainty with a uniform distribution. First, a parametric study is performed by varying each parameter individually. Then, the Pearson correlation coefficients are calculated and discussed before a full Monte Carlo simulation is performed, and the histograms of results are investigated. It is evident that the outer diameter of the pipe has the largest effect on the maximum displacement of the pipe in the post-flutter regime. Chaotic behavior is exhibited when motion-limiting constraints are present in the system, so the system is tested with motion-limiting constraints as well. Monte Carlo simulation is performed, and bivariate diagrams are plotted to investigate how uncertainty affects the maximum displacement and periodicity of the oscillations together. Again, the outer diameter of the pipe is seen to be the most sensitive parameter to uncertainty when motion-limiting constraints are present. However, the parameters besides the outer diameter exhibit more sensitivity at high flow speeds. The results indicate that it is necessary to control the uncertainty introduced in the outer diameter to achieve expected dynamical responses at low flow speeds, but the uncertainty in all parameters must be controlled at higher flow speeds when motion-limiting constraints are present to achieve the expected behavior and chaotic responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data availability

Data will be made available upon reasonable request.

References

  1. Ramm, E.: Strategies for tracing the nonlinear response near limit points. In: Wunderlich, W., Stein, E., Bathe, K.-J. (eds.) Nonlinear Finite Element Analysis in Structural Mechanics, pp. 63–89. Springer, Berlin (1981)

    Chapter  Google Scholar 

  2. Paidoussis, M.P., Moon, F.: Nonlinear and chaotic fluidelastic vibrations of a flexible pipe conveying fluid. J. Fluids Struct. 2, 567–591 (1988)

    Article  Google Scholar 

  3. Paidoussis, M.P., Semler, C.: Nonlinear dynamics of a fluid-conveying cantilevered pipe with an intermediate spring support. J. Fluids Struct. 7, 269–298 (1993)

    Article  Google Scholar 

  4. Paidoussis, M.P., Semler, C.: Nonlinear and chaotic oscillations of a constrained cantilevered pipe conveying fluid: a full nonlinear analysis. Nonlinear Dyn. 4, 655–670 (1993)

    Article  Google Scholar 

  5. Bukkapatnam, S.T.S., Palanna, R.: Experimental characterization of nonlinear dynamics underlying the cylindrical grinding process. J. Manuf. Sci. Eng. 126, 341–344 (2004)

    Article  Google Scholar 

  6. Askarian, A.R., Haddapour, H., Firouz-Abadi, R., Abtahi, H.: Nonlinear dynamics of extensible visoelastic cantilevered pipes conveying pulsatile flow with an end nozzle. Int. J. Non-Linear Mech. 91, 22–35 (2017)

    Article  Google Scholar 

  7. Xiao, F., Chen, G.S., Hulsey, J.L., Zatar, W.: Characterization of nonlinear dynamics for a highway bridge in Alaska. J. Vib. Eng. Technol. 6, 379–386 (2018)

    Article  Google Scholar 

  8. Ali-Akbari, H.R., Ceballes, S., Abdelkefi, A.: Nonlinear performance analysis of forced carbon nanotube-based bio-mass sensors. Int. J. Mech. Mater. Des. 15, 291–315 (2019)

    Article  Google Scholar 

  9. Zimmerman, S., Ceballes, S., Taylor, G., Chang, B., Jung, S., Abdelkefi, A.: Nonlinear modeling and experimental verification of Gannet-inspired beam systems during diving. Bioinspir. Biomim. (2019). https://doi.org/10.1088/1748-3190/aaf98c

    Article  Google Scholar 

  10. Ghaffari, S.S., Ceballes, S., Abdelkefi, A.: Nonlinear dynamical responses of forced carbon nanotube-based mass sensors under the influence of thermal loadings. Nonlinear Dyn. 100, 1013–1035 (2020)

    Article  Google Scholar 

  11. Rega, G.: Nonlinear dynamics in mechanics and engineering: 40 years of developments and Ali H. Nayfeh’s legacy. Nonlinear Dyn. 99, 11–34 (2020)

    Article  MATH  Google Scholar 

  12. Ashley, H., Haviland, G.: Bending vibrations of a pipe line containing flowing fluid. J. Appl. Mech. 17, 229–232 (1950)

    Article  Google Scholar 

  13. Niordson, F.I.: Vibrations of a cylindrical tube containing flowing fluid. Transactions of the Royal Institute of Technology, Kungl. Tekniska högskolans handlingar (Stockholm), No. 73 (1953)

  14. Housner, G.W.: Bending vibrations of a pipe when liquid flows through it. J. Appl. Mech. 19, 205–208 (1952)

    Article  Google Scholar 

  15. Long, R.H.: Experimental and theoretical study of transverse vibration of tube containing flowing fluid. J. Appl. Mech. 22, 65–68 (1955)

    Article  Google Scholar 

  16. Gregory, R.W., Paidoussis, M.P.: Unstable oscillation of tubular cantilevers conveying fluid II. Experiments. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 293(1435), 428–542 (1966)

    Google Scholar 

  17. Paidoussis, M.P., Issid, N.T.: Dynamic stability of pipes conveying fluid. J. Sound Vib. 33(3), 267–294 (1974)

    Article  Google Scholar 

  18. Paidoussis, M.P.: A review of flow-induced vibrations in reactors and reactor components. Nucl. Eng. Des. 74(1), 31–60 (1983)

    Article  Google Scholar 

  19. Paidoussis, M.P., Li, G.X., Moon, F.: Chaotic oscillations of the autonomous system of a constrained pipe conveying fluid. J. Sound Vib. 135(1), 1–19 (1989)

    Article  MATH  Google Scholar 

  20. Paidoussis, M.P., Li, G.X., Rand, R.H.: Chaotic motions of a constrained pipe conveying fluid: comparison between simulation, analysis, and experiment. J. Appl. Mech. 58, 559–565 (1991)

    Article  Google Scholar 

  21. Paidoussis, M.P.: Flow-induced instabilities of cylindrical structures. ASME Appl. Mach. Rev. 40(2), 163–175 (1987)

    Article  Google Scholar 

  22. Semler, C., Paidoussis, M.P.: Nonlinear analysis of the parametric resonances of a planar fluid-conveying cantilevered pipe. J. Fluids Struct. 10(7), 787–825 (1996)

    Article  Google Scholar 

  23. Paidoussis, M.P., Grinevich, E., Adamovic, D., Semler, C.: Linear and nonlinear dynamics of cantilevered cylinders in axial flow. Part 1: physical dynamics. J. Fluids Struct. 16(6), 691–713 (2002)

    Article  Google Scholar 

  24. Lopes, J.-L., Paidoussis, M.P., Semler, C.: Linear and nonlinear dynamics of cantilevered cylinders in axial flow. Part 2: the equations of motion. J. Fluids Struct. 16(6), 715–737 (2002)

    Article  Google Scholar 

  25. Semler, C., Lopes, J.L., Augu, N., Paidoussis, M.P.: Linear and nonlinear dynamics of cantilevered cylinders in axial flow. Part 3: nonlinear dynamics. J. Fluids Struct. 16(6), 739–759 (2002)

    Article  Google Scholar 

  26. Paidoussis, M.P., Semler, C., Wadham-Gagnon, M., Saaid, S.: Dynamics of cantilevered pipes conveying fluid. Part 2: dynamics of the system with intermediate spring support. J. Fluids Struct. 23, 569–587 (2007)

    Article  Google Scholar 

  27. Modarres-Sadeghi, Y., Semler, C., Wadham-Gagnon, M., Paidoussis, M.P.: Dynamics of cantilevered pipes conveying fluid. Part 3: three-dimensional dynamics in the presence of an end-mass. J. Fluids Struct. 23(4), 589–603 (2007)

    Article  Google Scholar 

  28. Rinaldi, S., Paidoussis, M.P.: Dynamics of a cantilevered pipe discharging fluid, fitted with a stabilizing end-piece. J. Fluids Struct. 26(3), 517–525 (2010)

    Article  Google Scholar 

  29. Ghayesh, M.H., Païdoussis, M.P.: Three-dimensional dynamics of a cantilevered pipe conveying fluid, additionally supported by an intermediate spring array. Int. J. Non-Linear Mech. 45(5), 507–524 (2010)

    Article  Google Scholar 

  30. Rinaldi, S., Païdoussis, M.P.: Theory and experiments on the dynamics of a free-clamped cylinder in confined axial air-flow. J. Fluids Struct. 28, 167–179 (2012)

    Article  Google Scholar 

  31. Giacobbi, D.B., Semler, C., Paidoussis, M.P.: Dynamics of pipes conveying fluid of axially varying density. J Sound Vib (2020). https://doi.org/10.1016/j.jsv.2020.115202

    Article  Google Scholar 

  32. Paidoussis, M.P., Abdelbaki, A.R., Faisal, B.M.F.J., Tavallaeinejad, M., Moditis, K., Misra, A.K., Nahon, M., Ratigan, J.L.: Dynamics of a cantilevered pipe subjected to internal and reverse external axial flow: a review. J. Fluids Struct. (2021). https://doi.org/10.1016/j.jfluidstructs.2021.103349

    Article  Google Scholar 

  33. Butt, M.F.J., Paidoussis, M.P., Nahon, M.: Dynamics of a confined pipe aspirating fluid and concurrently subjected to external axial flow: an experimental investigation. J. Fluids Struct. (2021). https://doi.org/10.1016/j.jfluidstructs.2021.103299

    Article  Google Scholar 

  34. Semler, C., Li, G.X., Paidoussis, M.P.: The non-linear equations of motion of pipes conveying fluid. J. Sound Vib. 169(5), 577–599 (1994)

    Article  MATH  Google Scholar 

  35. Wang, L., Liu, Z.Y., Abdelkefi, A., Wang, Y.K., Dai, H.: Nonlinear dynamics of cantilevered pipes conveying fluid: towards a further understanding of the effect of loose constraints. Int. J. Non-Linear Mech. 95, 19–29 (2017)

    Article  Google Scholar 

  36. Taylor, G., Ceballes, S., Abdelkefi, A.: Insights on the point of contact analysis and characterization of constrained pipelines conveying fluid. Nonlinear Dyn. 93, 1261–1275 (2018)

    Article  Google Scholar 

  37. Ceballes, S., Abdelkefi, A.: Uncertainty analysis and stochastic characterization of carbon nanotube-based mass sensor with multiple deposited nano particles. Sens. Actuators A: Phys. (2021). https://doi.org/10.1016/j.sna.2021.113182

    Article  MATH  Google Scholar 

  38. Guo, Q., Liu, Y., Chen, B., Zhang, Y.: Stochastic natural frequency analysis of varying diameter functionally graded material pipe conveying fluid. Ocean Eng. (2021). https://doi.org/10.1016/j.oceaneng.2021.109630

    Article  Google Scholar 

  39. Ritto, T.G., Soize, C., Rochniha, F.A., Sampaio, R.: Dynamic stability of a pipe conveying fluid with an uncertain computational model. J. Fluids Struct. 49, 412–426 (2014)

    Article  Google Scholar 

  40. Alvis, T., Ceballes, S., Abdelkefi, A.: Sensitive parameter identification and uncertainty quantification for the stability of pipeline conveying fluid. Int. J. Mech. Mater. Design 18, 327–351 (2021)

    Article  Google Scholar 

  41. Metropolis, N., Ulam, S.: The Monte Carlo method. J. Am. Stat. Assoc. 44(247), 335–341 (1949)

    Article  MATH  Google Scholar 

  42. Benesty, J., Chen, J., Huang, Y., Cohen, I.: Pearson correlation coefficient. In: Cohen, I., Huang, Y., Chen, J., Benesty, J. (eds.) Noise Reduction in Speech Processing, pp. 1–4. Springer, Berlin (2009)

    Google Scholar 

  43. Seneta, E.: A tricentenary history of the law of large numbers. Bernoulli 19(4), 1088–1121 (2013)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank S. Ceballes for her fruitful discussions. In addition, the authors would like to thank Sandia National Laboratories for their funding of this project. “Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525. This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do not necessarily represent the views of the US Department of Energy or the United States Government.” SAND2022-16011J.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdessattar Abdelkefi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

$$ \beta = \sqrt[4]{{\frac{m + M}{{EI}}\omega^{2} }} $$
(A1)
$$ C_{ij} = EI\eta \int_{0}^{L} {\beta^{4} \phi_{j} \phi_{i} {\text{d}}S = } \delta_{ij} \eta \omega^{2} $$
(A2)
$$ \left( {Cu} \right)_{ij} = 2M\int_{0}^{L} {\phi^{\prime}_{j} \phi_{i} } $$
(A3)
$$ K_{ij} = \int_{0}^{L} {\left[ {EI\beta^{4} \phi_{j} - \left( {m + M} \right)g\left( {L - S} \right)\phi^{\prime\prime}_{j} + \left( {m + M} \right)\phi^{\prime}_{j} } \right]\phi_{i} {\text{d}}S} $$
(A4)
$$ \left( {Ku} \right)_{ij} = M\int\limits_{0}^{1} {\phi^{\prime\prime}_{j} \phi_{i} {\text{d}}s} $$
(A5)
$$ M_{ijkl} = \int_{0}^{L} {\left( {\phi^{\prime}_{l} \int_{0}^{s} {\left( {m + M} \right)\phi^{\prime}_{k} \phi^{\prime}_{j} ds} - \phi^{\prime\prime}_{l} \int_{s}^{L} {\int_{0}^{s} {\left( {m + M} \right)\phi^{\prime}_{k} \phi^{\prime}_{j} {\text{d}}s} {\text{d}}s} } \right)\phi_{i} {\text{d}}s} $$
(A6)
$$ N_{ijkl} = 2M\int_{0}^{L} {\left( {\phi^{\prime}_{l} \phi^{\prime}_{k} \phi^{\prime}_{j} + \phi^{\prime}_{l} \int_{0}^{s} {\phi^{\prime\prime}_{k} \phi^{\prime}_{j} {\text{d}}s} - \phi^{\prime\prime}_{l} \int_{s}^{L} {\left( {\phi^{\prime\prime}_{k} \phi^{\prime}_{j} {\text{d}}s - \int_{0}^{s} {\phi^{\prime\prime}_{k} \phi^{\prime}_{j} {\text{d}}s} } \right){\text{d}}s} } \right)\phi_{i} {\text{d}}s} $$
(A7)
$$ \begin{aligned} P_{ijkl} & = \int_{0}^{L} {\left[ { - \frac{3}{2}\left( {m + M} \right)g\left( {L - s} \right)\phi^{\prime\prime}_{l} \phi^{\prime}_{k} \phi^{\prime}_{j} - \frac{1}{2}\left( {m + M} \right)g\phi^{\prime}_{l} \phi^{\prime}_{k} \phi^{\prime}_{j} + 3EI\phi^{\prime\prime\prime}_{l} \phi^{\prime\prime}_{k} \phi^{\prime}_{j} + EI\phi^{\prime\prime}\phi^{\prime\prime}\phi^{\prime\prime}} \right.} \\ & \quad + \phi^{\prime}_{l} \int_{0}^{s} {\left( {\left( {m + M} \right)g\left( {L - s} \right)\phi^{\prime\prime\prime}_{k} \phi^{\prime}_{j} + EI\phi^{\prime\prime\prime}_{k} \phi^{\prime\prime}_{j} } \right){\text{d}}s} - \phi^{\prime\prime}_{l} \int_{s}^{L} {\left( {\left( { - \left( {m + M} \right)g\phi^{\prime}_{k} \phi^{\prime}_{j} + EI\phi_{k}^{iv} \phi^{\prime\prime}_{j} } \right){\text{d}}s} \right.} \\ & \quad \left. {\left. { + \int_{0}^{s} {\left( {\left( {m + M} \right)g\left( {L - s} \right)\phi^{\prime\prime\prime}_{k} \phi^{\prime}_{j} + EI\phi_{k}^{iv} \phi^{\prime\prime}_{j} } \right)_{j} {\text{d}}s} } \right){\text{d}}s} \right]\phi_{i} {\text{d}}s \\ \end{aligned} $$
(A8)
$$ \left( {Pu} \right)_{ijkl} = M\int_{0}^{L} {\left( {\phi^{\prime\prime}_{l} \phi^{\prime}_{k} \phi^{\prime}_{j} - \phi^{\prime}_{l} \int_{0}^{s} {\phi^{\prime\prime\prime}_{k} \phi^{\prime}_{j} {\text{d}}s} - \phi^{\prime\prime}_{l} \int_{s}^{L} {\left( {\phi^{\prime\prime}_{k} \phi^{\prime}_{j} {\text{d}}s - \int_{0}^{s} {\phi^{\prime\prime\prime}_{k} \phi^{\prime}_{j} {\text{d}}s} } \right){\text{d}}s} } \right)\phi_{i} {\text{d}}s} $$
(A9)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alvis, T., Abdelkefi, A. Stochastic investigation of the input uncertainty effects on the dynamic responses of constrained pipelines conveying fluids. Nonlinear Dyn 111, 3981–4015 (2023). https://doi.org/10.1007/s11071-022-08039-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-08039-5

Keywords

Navigation