Skip to main content
Log in

Insights on the point of contact analysis and characterization of constrained pipelines conveying fluid

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Modern methods of nonlinear dynamics including time histories, phase portraits, power spectra, and Poincaré sections are used to characterize the stability and bifurcation regions of a cantilevered pipe conveying fluid with symmetric constraints at the point of contact. In this study, efforts are made to demonstrate the importance of characterizing the system at the arbitrarily positioned symmetric constraints rather than at the tip of the cantilevered pipe. Using the full nonlinear equations of motion and the Galerkin discretization, a nonlinear analysis is performed. After validating the model with previous results using the bifurcation diagrams and achieving full agreement, the bifurcation diagram at the point of contact is further investigated to select key flow velocities of interest. In addition to demonstrating the progression of the selected regions using primarily phase portraits, a detailed comparison is made between the tip and the point of contact at the key flow velocities. In doing so, period doubling, pitchfork bifurcations, grazing bifurcations, sticking, and chaos that occur at the point of contact are found to not always occur at the tip for the same flow speed. Thus, it is shown that in the case of cantilevered pipes with constraints, more accurate characterization of the system is obtained in a specified range of flow velocities by characterizing the system at the point of contact rather than at the tip.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Ing, J., Kryzhevich, S., Wiercigroch, M.: Through the looking-glass of the grazing bifurcation: part I—theoretical framework. Discontin. Nonlinearity Complex. 2, 203–223 (2013)

    Article  MATH  Google Scholar 

  2. Soukup, J., Skočilas, J., Skočilasová, B., Ryhlíková, L.: Motion equations of isotropic and orthotropic plate impacted by elastic rod. J. Appl. Nonlinear Dyn. 3, 393–401 (2014)

    Article  MATH  Google Scholar 

  3. Bazhenov, V.A., Lizunov, P.P., Pogorelova, O.S., Postnikova, T.G., Otrashevskaia, V.V.: Stability and bifurcations analysis for 2-DOF vibroimpact system by parameter continuation method. Part I: loading curve. J. Appl. Nonlinear Dyn. 4, 357–370 (2015)

    Article  Google Scholar 

  4. Bazhenov, V.A., Lizunov, P.P., Pogorelova, O.S., Postnikova, T.G.: Numerical bifurcation analysis of discontinuous 2-DOF vibroimpact system. Part 2: frequency-amplitude responses. J. Appl. Nonlinear Dyn. 5, 269–281 (2016)

    Article  MathSciNet  Google Scholar 

  5. Kuo, C.-W., Suh, C.S.: Mitigating grazing bifurcation and vibro-impact instability in time-frequency domain. J. Appl. Nonlinear Dyn. 5, 169–184 (2016)

    Article  MathSciNet  Google Scholar 

  6. Akhmet, M.U., Kivilcim, A.: An impact oscillator with a grazing cycle. Discontin. Nonlinearity Complex. 6, 105–111 (2017)

    Article  MATH  Google Scholar 

  7. Dishlieva, K.G.: Asymptotic stability of nonzero solutions of discontinuous systems of impulsive differential equations. Discontin. Nonlinearity Complex. 6, 201–218 (2017)

    Article  MATH  Google Scholar 

  8. Wang, L., Hong, Y., Dai, H., Ni, Q.: Natural frequency and stability tuning of cantilevered CNTs conveying fluid in magnetic field. Acta Mech. Solida Sin. 29, 567–576 (2016)

    Article  Google Scholar 

  9. Zhang, W., Yan, H., Jiang, H., Hu, K., Peng, Z., Meng, G.: Dynamics of suspended microchannel resonators conveying opposite internal fluid flow: stability, frequency shift, and energy dissipation. J. Sound Vib. 368, 103–120 (2016)

    Article  Google Scholar 

  10. Rinaldi, S., Prabhakar, S., Vengallator, S., Païdoussis, M.: Dynamics of microscale pipes containing internal fluid flow: damping, frequency shift, and stability. J. Sound Vib. 329, 1081–1088 (2010)

    Article  Google Scholar 

  11. Hu, K., Wang, Y., Dai, H., Wang, L., Qian, Q.: Nonlinear and chaotic vibrations of cantilevered micropipes conveying fluid based on modified couple stress theory. Int. J. Eng. Sci. 105, 93–107 (2016)

    Article  MathSciNet  Google Scholar 

  12. Ashley, H., Haviland, G.: Bending vibrations of a pipe line containing flowing fluid. J. Appl. Mech. 17, 229–232 (1950)

    MathSciNet  Google Scholar 

  13. Housner, G.W.: Bending vibrations of a pipe when liquid flows through it. J. Appl. Mech. 19, 205–208 (1952)

    Google Scholar 

  14. Askarian, A.R., Haddapour, H., Firouz-Abadi, R., Abtahi, H.: Nonlinear dynamics of extensible viscoelastic cantilevered pipes conveying pulsatile flow with an end nozzle. Int. J. Non-Linear Mech. 91, 22–35 (2017)

    Article  Google Scholar 

  15. Chen, S., Rosenberg, G.: Vibration and stability of tube exposed to pulsating parallel flow. Trans. Am. Nucl. Soc. 13, 335–336 (1970)

    Google Scholar 

  16. Ghayesh, M., Païdoussis, M.: Three dimensional dynamics of a cantilevered pipe conveying fluid, additionally supported by an intermediate spring array. Int. J. Non-Linear Mech. 45, 507–524 (2010)

    Article  Google Scholar 

  17. Païdoussis, M., Semler, C., Wadham-Gagnon, M., Saaid, S.: Dynamics of cantilevered pipes conveying fluid. Part 2: dynamics of the system with intermediate spring support. J. Fluids Struct. 23, 569–587 (2007)

    Article  Google Scholar 

  18. Païdoussis, M., Semler, C.: Nonlinear dynamics of a fluid-conveying cantilevered pipe with an intermediate spring support. J. Fluids Struct. 7, 269–298 (1993)

    Article  Google Scholar 

  19. Modarres-Sadeghi, Y., Semler, C., Wadham-Gagnon, M., Païdoussis, M.: Dynamics of cantilevered pipes conveying fluid. Part 3: three-dimensional dynamics in the presence of an end-mass. J. Fluids Struct. 23, 589–603 (2007)

    Article  Google Scholar 

  20. Semler, C., Li, G., Païdoussis, M.: The nonlinear equations of motion of a pipe conveying fluid. J. Sound Vib. 169, 577–599 (1994)

    Article  MATH  Google Scholar 

  21. Rousselet, J., Herrmann, G.: Dynamic behavior of continuous cantilevered pipes conveying fluid near critical velocities. J. Appl. Mech. 43, 945–947 (1981)

    Google Scholar 

  22. Païdoussis, M., Moon, F.: Nonlinear and chaotic fluidelastic vibrations of a flexible pipe conveying fluid. J. Fluids Struct. 2, 567–591 (1988)

    Article  Google Scholar 

  23. Païdoussis, M., Li, G., Moon, F.: Chaotic oscillations of the autonomous system of a constrained pipe conveying fluid. J. Sound Vib. 135, 567–591 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  24. Païdoussis, M., Li, G., Rand, R.: Chaotic motions of a constrained pipe conveying fluid: comparison between simulation, analysis, and experiment. J. Appl. Mech. 58, 559–565 (1991)

    Article  Google Scholar 

  25. Païdoussis, M., Semler, C.: Nonlinear and chaotic oscillations of a constrained cantilevered pipe conveying fluid: a full nonlinear analysis. Nonlinear Dyn. 4, 655–670 (1993)

    Article  Google Scholar 

  26. Gregory, R., Païdoussis, M.: Unstable oscillation of tubular cantilevers conveying fluid. I. Theory; II. Experiments. In: Proceedings of the Royal Society (London), Series A, vol. 293, pp. 512–527 and 528–542 (1966)

  27. Païdoussis, M.C.J., Copeland, J.: Low-dimensional chaos in a flexible tube conveying fluid. J. Appl. Mech. 59, 196–205 (1992)

    Article  Google Scholar 

  28. Païdoussis, M.: Fluid-Structure Interactions: Slender Structures and Axial Flow, vol. 1. Academic Press, London (1998)

    Google Scholar 

  29. Païdoussis, M., Deksnis, E.: Articulated models of cantilevers conveying fluid: the study of a paradox. I. Mech. E. J. Mech. Eng. Sci. 12, 288–300 (1970)

    Article  Google Scholar 

  30. Païdoussis, M., Issid, N.: Dynamic stability of pipes conveying fluid. J. Sound Vib. 33, 267–294 (1974)

    Article  Google Scholar 

  31. Païdoussis, M., Li, G.: Pipes conveying fluid: a model dynamical problem. J. Fluids Struct. 7, 137–204 (1993)

    Article  Google Scholar 

  32. Tang, D., Dowell, E.: Chaotic oscillations of a cantilevered pipe conveying fluid. J. Fluids Struct. 2, 263–283 (1988)

    Article  Google Scholar 

  33. Whiston, G.: Global dynamics of a vibro-impacting linear oscillator. J. Sound Vib. 118, 395–424 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  34. Moon, F., Shaw, S.: Chaotic vibrations of a beam with non-linear boundary conditions. Int. J. Non-Linear Mech. 18, 465–477 (1983)

    Article  Google Scholar 

  35. Shaw, S.: Forced vibrations of a beam with one-sided amplitude constraint: theory and experiment. J. Sound Vib. 99, 199–212 (1985)

    Article  Google Scholar 

  36. de Weger, J., Binks, D.M.J., de Water, W.: Generic behavior of grazing impact oscillators. Phys. Rev. Lett. 76, 3951–3954 (1996)

    Article  Google Scholar 

  37. Long, X., Lin, G., Balachandran, B.: Grazing bifurcation in elastic structures excited by harmonic impactor motions. Physica D 237, 1129–1138 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  38. Dick, A., Balachandran, B., Yabuno, H., Numatsu, K., Hayashi, K., Kuroda, M., Ashida, K.: Utilizing nonlinear phenomena to locate grazing in the constrained motion of a cantilever beam. Nonlinear Dyn. 57, 335–349 (2009)

    Article  MATH  Google Scholar 

  39. Chakraborty, I., Balachandran, B.: Near-grazing dynamics of base-excited cantilevers with nonlinear tip interactions. Nonlinear Dyn. 70, 1297–1310 (2012)

    Article  MathSciNet  Google Scholar 

  40. Wang, L., Liu, Z., Abdelkefi, A., Wang, Y., Dai, H.: Nonlinear dynamics of cantilevered pipes conveying fluid: towards a further understanding of the effect of loose constraints. Int. J. Non-Linear Mech. 95, 19–29 (2017)

    Article  Google Scholar 

  41. Shaw, S., Holmes, P.: A periodically forced piecewise linear oscillator. J. Sound Vib. 90, 129–155 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  42. Nordmark, A.: Non-periodic motion caused by grazing incidence in an impact oscillator. J. Sound Vib. 145, 279–297 (1991)

    Article  Google Scholar 

  43. Stensson, A., Nordmark, A.: Experimental investigation of some consequences of low velocity impacts on the chaotic dynamics of a mechanical system. Philos. Trans. R. Soc. A 347, 439–448 (1994)

    Article  Google Scholar 

  44. Chin, W., Ott, E., Nusse, H., Grebogi, C.: Grazing bifurcation in impact oscillators. Phys. Rev. E 50, 4427–4444 (1994)

    Article  MathSciNet  Google Scholar 

  45. Virgin, L., Begley, C.: Grazing Bifurcations and basins of attraction in an impact-friction. Physica D 130, 43–57 (1999)

    Article  MATH  Google Scholar 

  46. Molenaar, J., de Weger, J., de Water, W.: Mapping of grazing impact oscillators. Nonlinearity 14, 301–321 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  47. Dankowicz, H., Zhao, X., Misra, S.: Near grazing in tapping-mode atomic force microscopy. Int. J. Non-Linear Mech. 42, 697–709 (2007)

    Article  Google Scholar 

  48. Virgin, L., Dowell, E., Conner, M.: On the evolution of deterministic non-periodic behavior of an airfoil. Int. J. Non-Linear Mech. 34, 499–514 (1999)

    Article  MATH  Google Scholar 

  49. Conner, M., Tang, M., Dowell, E., Virgin, L.: Nonlinear behavior of a typical airfoil section with control surface freeplay. J. Fluids Struct. 11, 89–109 (1996)

    Article  Google Scholar 

  50. Trickey, T., Virgin, L., Dowell, H.: The stability of limit-cycle oscillations in a nonlinear aeroelastic system. Proc. Math. Phys. Eng. Sci. 458, 2203–2226 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  51. Abdelkefi, A., Vasconcellos, R., Marques, F., Hajj, M.: Modeling and identification of freeplay nonlinearity. J. Sound Vib. 331, 1898–1907 (2012)

    Article  Google Scholar 

  52. Vasconcellos, R., Abdelkefi, A., Marques, F., Hajj, M.: Representation and analysis of control surface freeplay nonlinearity. J. Fluids Struct. 31, 79–91 (2012)

    Article  Google Scholar 

  53. Vasconcellos, R., Abdelkefi, A., Hajj, M., Almeida, D., Marques, F.: Airfoil control surface discontinuous nonlinearity experimental assessment and numerical model validation. J. Vib. Control 22, 1633–1644 (2014)

    Article  Google Scholar 

  54. Vasconcellos, R., Abdelkefi, A.: Phenomena and characterization of grazing-sliding bifurcations in aeroelastic systems with discontinuous impact effects. J. Sound Vib. 358, 315–322 (2015)

    Article  Google Scholar 

  55. di Bernardo, M., Budd, C., Champneys, A., Kowalcyzk, P., Nordmark, A., Tost, G., Piiroinen, P.: Bifurcations in nonsmooth dynamical systems. SIAM Rev. 50, 629–701 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  56. Wagg, D.: Rising phenomena and the multi-sliding bifurcation in a two-degree of freedom impact oscillator. Chaos Solitons Fractals 22, 541–548 (2004)

    Article  MATH  Google Scholar 

  57. Makarenkov, O., Lamb, J.: Dynamics and bifurcations of nonsmooth systems: a survey. Physica D 241, 1826–1844 (2012)

    Article  MathSciNet  Google Scholar 

  58. Luo, A., Gegg, B.: On the mechanism of stick and nonstick, periodic motions in a periodically forced, linear oscillator with dry friction. J. Vib. Acoust. 128, 97–105 (2005)

    Article  Google Scholar 

  59. Luo, A., Gegg, B.: Dynamics of a harmonically excited oscillator with dry-friction on a sinusoidally time-varying, traveling surface. Int. J. Bifurc. Chaos 16(12), 3539–3566 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  60. Luo, A., Gegg, B.: Stick and non-stick periodic motions in periodically forced oscillators with dry friction. J. Sound Vib. 291, 132–168 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  61. Galvanetto, U.: Some discontinuos bifurcations in a two block stick-slip. J. Sound Vib. 248, 653–659 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  62. Galvanetto, U.: Sliding bifurcations in the dynamics of mechanical systems with dry friction—remarks for engineers and applied scientists. J. Sound Vib. 276, 121–139 (2004)

    Article  Google Scholar 

  63. Nordmark, A., Kowalczyk, P.: A codimension two scenario of sliding solutions in grazing-sliding bifurcations. Nonlinearity 19, 1–26 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  64. Jeffrey, M.: Nondeterminism in the limit of nonsmooth dynamics. Phys. Rev. Lett. 106, 254103 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the funding support from New Mexico Space Grant Consortium

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Abdelkefi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taylor, G., Ceballes, S. & Abdelkefi, A. Insights on the point of contact analysis and characterization of constrained pipelines conveying fluid. Nonlinear Dyn 93, 1261–1275 (2018). https://doi.org/10.1007/s11071-018-4257-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4257-3

Keywords

Navigation