Skip to main content
Log in

Nonlinear dynamics in mechanics and engineering: 40 years of developments and Ali H. Nayfeh’s legacy

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Nonlinear dynamics of engineering systems has reached the stage of full maturity in which it makes sense to critically revisit its past and present in order to establish an historical perspective of reference and to identify novel objectives to be pursued. This paper makes a first step in this direction, focusing on the mechanics of machines, solids and structures, with applications in both classical and novel technological areas. This is accomplished first by identifying some main stages of scientific development over the last four decades, with the characterizing features as regards addressed systems, underlying mathematical tools and phenomenological aspects. These are substantiated in terms of topics and involved people with also an archival, and tentatively comprehensive, list of related activities. The second part of the study deals with Ali Nayfeh’s contributions as a scientist and a scholar, embedding his research achievements within the identified four stages of development and highlighting some qualifying methodological features of his activity as a book author. His legacy is framed within an overall scenario of expected future developments of nonlinear dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Duffing, G.: Erzwungene Schwingungen bei veränderlicher Eigenfrequenz und ihre technische Bedeutung. Vieweg, Braunschweig (1918)

    MATH  Google Scholar 

  2. Kovacic, I., Brennan, M. (eds.): The Duffing Equation. Non-linear Oscillators and Their Behaviour. Wiley, Chichester (2010)

    Google Scholar 

  3. van der Pol, B.: On relaxation-oscillations. Philosophical Magazine 2, 978–992 (1926)

    Google Scholar 

  4. Poincaré, H.J.: Sur le problème des trois corps et les équations de la dynamique. Acta Mathematica 13, 1–270 (1890)

    MathSciNet  MATH  Google Scholar 

  5. Lyapunov, A.M.: Problème général de la stabilité du mouvement. Annales de la Faculté des Sciences de Toulouse 9, 203–469 (1907). (Russian edition, Moscow 1892)

    MathSciNet  Google Scholar 

  6. Birkhoff, G.D.: Dynamical Systems. American Mathematical Society, Providence, RI (1927)

    MATH  Google Scholar 

  7. Mira, C.: Some historical aspects of nonlinear dynamics: possible trends for the future. Int. J. Bifurcat. Chaos 7(9), 2145–2173 (1997)

    MathSciNet  MATH  Google Scholar 

  8. Andronov, A.A., Witt, A.A., Khaïkin, S.E.: Theory of Oscillators. Pergamon, London (1966). (Russian edition, Moscow 1937)

    Google Scholar 

  9. Krylov, N.M., Bogoliubov, N.N.: Introduction to Nonlinear Mechanics. Princeton University Press, Princeton (1947). (Russian edition, Moscow 1937)

    MATH  Google Scholar 

  10. Holmes, P.: Ninety plus thirty years of nonlinear dynamics: More is different and less is More. Int. J. Bifurcat. Chaos 15(9), 2703–2716 (2005)

    MATH  Google Scholar 

  11. Aubin, D., Dahan Dalmedico, A.: Writing the history of dynamical systems and chaos: Longue durée and revolution, disciplines and cultures. Historia Mathematica 29, 273–339 (2002)

    MathSciNet  MATH  Google Scholar 

  12. Shaw, S.W., Balachandran, B.: A review of nonlinear dynamics of mechanical systems in year 2008. J. Syst. Des. Dyn. 2(3), 611–640 (2008)

    Google Scholar 

  13. Stoker, J.J.: Nonlinear Vibrations in Mechanical and Electrical Systems. Interscience Publishers, New York (1950)

    MATH  Google Scholar 

  14. Bogoliubov, N.N., Mitropolski, Y.A.: Asymptotic Methods in the Theory of Nonlinear Oscillations. Gordon and Breach, New York (1961)

    Google Scholar 

  15. Minorski, N.: Nonlinear Oscillations. Van Nostrand, Princeton (1962)

    MATH  Google Scholar 

  16. Hayashi, C.: Nonlinear Oscillations in Physical Systems. McGraw-Hill, New York (1964)

    MATH  Google Scholar 

  17. Nayfeh, A.H.: Perturbation Methods. Wiley, New York (1973)

    MATH  Google Scholar 

  18. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (1979)

    MATH  Google Scholar 

  19. Ewan-Iwanowski, R.M.: Resonance Oscillations in Mechanical Systems. Elsevier, New York (1976)

    MATH  Google Scholar 

  20. Hagedorn, P.: Nonlinear Oscillations. Clarendon Press, Oxford (1981)

    Google Scholar 

  21. Kevorkian, J., Cole, J.D.: Perturbation Methods in Applied Mechanics. Springer, New York (1981)

    MATH  Google Scholar 

  22. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcation of Vector Fields. Springer, New York (1983)

    MATH  Google Scholar 

  23. Sanders, J.A., Verhulst, F.: Averaging Methods in Nonlinear Dynamical Systems. Springer, New York (1985)

    MATH  Google Scholar 

  24. Schmidt, G., Tondl, A.: Non-Linear Vibrations. Akademie, Berlin (1986)

    MATH  Google Scholar 

  25. Rand, R.H., Armbruster, D.: Perturbation Methods, Bifurcation Theory, and Computer Algebra. Springer, New York (1987)

    MATH  Google Scholar 

  26. Wiggins, S.: Global Bifurcation and Chaos: Analytical Methods. Springer, New York (1988)

    MATH  Google Scholar 

  27. Szemplinska-Stupnicka, W.: The Behaviour of Nonlinear Vibrating Systems. Vols. I and II. Kluwer, Dordrecht (1990)

    MATH  Google Scholar 

  28. Nayfeh, A.H.: Method of Normal Forms. Wiley, New York (1993)

    MATH  Google Scholar 

  29. Nayfeh, A.H.: Nonlinear Interactions. Wiley, New York (2000)

    MATH  Google Scholar 

  30. Liao, S.J.: Beyond Perturbation: Introduction to the Homotopy Analysis Method. Chapman & Hall/CRC Press, Boca Raton (2003)

    Google Scholar 

  31. Carr, J.: Applications of Centre Manifold Theory. Applied Mathematical Sciences, vol. 35, Springer, New York (1981)

    MATH  Google Scholar 

  32. Abraham, R., Shaw, C.: Dynamics: The Geometry of Behavior, vol. 1–4. Aerial Press, Santa Cruz (1982)

    Google Scholar 

  33. Arnold, V.I.: Geometrical Methods in the Theory of Ordinary Differential Equations. Springer, New York (1983)

    Google Scholar 

  34. Thompson, J.M.T., Stewart, H.B.: Nonlinear Dynamics and Chaos. Wiley, Chichester (1986)

    MATH  Google Scholar 

  35. Doedel, E.J., Oldeman, B.E.: AUTO-07P Continuation and Bifurcation Software for Ordinary Differential Equations (2012) (first edition, California Institute of Technology, Pasadena, CA 1986) http://indy.cs.concordia.ca/auto

  36. Hsu, C.S.: Cell to Cell Mapping: A Method of Global Analysis for Nonlinear Systems. Springer, New York (1987)

    MATH  Google Scholar 

  37. Seydel, R.: From Equilibrium to Chaos: Practical Bifurcation and Stability Analysis. Elsevier, New York (1988)

    MATH  Google Scholar 

  38. Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. Springer, New York (1989)

    MATH  Google Scholar 

  39. Arrowsmith, D.K., Place, C.M.: An Introduction to Dynamical Systems. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  40. Baker, G.L., Gollub, J.P.: Chaotic Dynamics. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  41. Wiggins, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos. Springer, New York (1990)

    MATH  Google Scholar 

  42. Rasband, S.N.: Chaotic Dynamics of Nonlinear Systems. Wiley, New York (1990)

    MATH  Google Scholar 

  43. Troger, H., Steindl, A.: Nonlinear Stability and Bifurcation Theory: An Introduction for Engineers and Applied Scientists. Springer, New York (1991)

    MATH  Google Scholar 

  44. Ott, E., Sauer, T., Yorke, J.A.: Coping with Chaos. Wiley, New York (1994)

    MATH  Google Scholar 

  45. Glendinning, P.: Stability, Instability and Chaos. Cambridge University Press, Cambridge (1994)

    MATH  Google Scholar 

  46. Strogatz, S.H.: Nonlinear Dynamics and Chaos. Addison-Wesley, New York (1994)

    Google Scholar 

  47. Nayfeh, A.H., Balachandran, B.: Applied Nonlinear Dynamics. Wiley, New York (1995)

    MATH  Google Scholar 

  48. Kustnezov, Y.A.: Elements of Applied Bifurcation Theory. Springer, New York (1995)

    Google Scholar 

  49. Pfeiffer, F., Glocker, C.: Multibody Dynamics with Unilateral Constraints. Wiley, New York (1996)

    MATH  Google Scholar 

  50. Brogliato, B.: Nonsmooth Mechanics, 2nd edn. Springer, London (1999)

    MATH  Google Scholar 

  51. Blazejczyk-Okolewska, B., Czolczynski, K., Kapitaniak, T., Wojewoda, J.: Chaotic Mechanics in Systems with Impacts and Friction. World Scientific, Singapore (1999)

    MATH  Google Scholar 

  52. Leine, R., Nijmeijer, H.: Dynamics and Bifurcations of Non-Smooth Mechanical Systems. Springer, New York (2004)

    MATH  Google Scholar 

  53. Di Bernardo, M., Budd, C.J., Champneys, A.R., Kowalczyk, P.: Piecewise-smooth Dynamical Systems: Theory and Applications. Springer, New York (2007)

    MATH  Google Scholar 

  54. Insperger, T., Stépán, G.: Semi-Discretization Method for Time-Delay Systems. Springer, New York (2011)

    MATH  Google Scholar 

  55. Moon, F.C.: Chaotic and Fractal Dynamics. An Introduction for Applied Scientists and Engineers. Wiley, New York (1992)

    Google Scholar 

  56. Abarbanel, H.D.I., Brown, R., Sidorowich, J.J., Tsimring, L.S.: The analysis of observed chaotic data in physical systems. Rev. Mod. Phys. 65(4), 1331–1392 (1993)

    MathSciNet  Google Scholar 

  57. Holmes, P., Lumley, J.L., Berkooz, G.: Turbulence, Coherent Structures, Dynamical Systems and Symmetry. Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

  58. Lauterborn, W., Kurz, T., Parlitz, U.: Experimental nonlinear physics. Int. J. Bifurcat. Chaos 7(9), 2003–2033 (1997)

    MATH  Google Scholar 

  59. Virgin, L.N.: Introduction to Experimental Nonlinear Dynamics. Cambridge University Press, New York (2000)

    MATH  Google Scholar 

  60. Ott, E., Grebogi, C., Yorke, J.A.: Controlling chaos. Phys. Rev. Lett. 64, 1196–1199 (1990)

    MathSciNet  MATH  Google Scholar 

  61. Pyragas, K.: Continuous control of chaos by self-controlling feedback. Phys. Lett. 170A, 421–428 (1992)

    Google Scholar 

  62. Kapitaniak, T.: Controlling Chaos. Academic Press, Lodz (1996)

    MATH  Google Scholar 

  63. Fradkov, A.L., Pogromsky, A.Y.: Introduction to Control of Oscillations and Chaos. World Scientific, Singapore (1998)

    MATH  Google Scholar 

  64. Vakakis, A.F., Gendelman, O., Bergman, L.A., McFarland, D.M., Kerschen, G., Lee, Y.S.: Passive Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems: I and II. Springer, Berlin (2008)

    MATH  Google Scholar 

  65. Sanjuan, M.A.F., Grebogi, C. (eds.): Recent Progress in Controlling Chaos. World Scientific, Singapore (2010)

    MATH  Google Scholar 

  66. Wagg, D., Neild, S.: Nonlinear Vibration with Control. Springer, Dordrecht (2010)

    MATH  Google Scholar 

  67. Nayfeh, A.H., Pai, P.F.: Linear and Nonlinear Structural Mechanics. Wiley, Hoboken (2004)

    MATH  Google Scholar 

  68. Antman, S.: Nonlinear Problems of Elasticity. Springer, New York (2005), (first edition, 1995)

  69. Amabili, M.: Nonlinear Vibrations and Stability of Shells and Plates. Cambridge University Press, New York (2008)

    MATH  Google Scholar 

  70. Younis, M.I.: MEMS Linear and Nonlinear Statics and Dynamics. Springer, New York (2011)

    Google Scholar 

  71. Lacarbonara, W.: Nonlinear Structural Mechanics. Springer, New York (2013)

    MATH  Google Scholar 

  72. Vakakis, A.F., Manevitch, L.I., Mikhlin, Y.V., Pilipchuk, V.N., Zevin, A.A.: Normal Modes and Localization in Nonlinear Systems. Wiley, New York (1996)

    MATH  Google Scholar 

  73. Landa, P.S.: Nonlinear Oscillations and Waves in Dynamical Systems. Springer, Dordrecht (1996)

    MATH  Google Scholar 

  74. Nesterenko, V.F.: Dynamics of Heterogeneous Materials. Springer, New York (2001)

    Google Scholar 

  75. Starosvetsky, Y., Jayaprakash, K.R., Hasan, M.A., Vakakis, A.F.: Topics on the Nonlinear Dynamics and Acoustics of Ordered Granular Media. World Scientific, Singapore (2017)

    MATH  Google Scholar 

  76. Manevitch, L.I., Kovaleva, A., Smirnov, V., Starosvetsky, Y.: Nonstationary Resonant Dynamics of Oscillatory Chains and Nanostructures. Springer Nature, Singapore (2017)

    MATH  Google Scholar 

  77. Andrianov, I., Gendelman, O., Manevitch, A., Mikhlin, Y. (eds): Problems of Nonlinear Mechanics and Physics of Materials. Advanced Structured Materials, vol. 94, Springer Nature, New York (2018)

  78. Awrejcewicz, J., Krysko, V.A., Krysko, A.V.: Thermo-Dynamics of Plates and Shells. Springer, New York (2007)

    MATH  Google Scholar 

  79. Erturk, A., Inman, D.J.: Piezoelectric Energy Harvesting. Wiley, New York (2011)

    Google Scholar 

  80. Païdoussis, M.P.: Fluid-Structure Interactions: Slender Structures and Axial Flow, vol. 1, 2nd edn. Academic Press, New York (2013)

    Google Scholar 

  81. Dorfmann, L., Ogden, R.W.: Nonlinear Theory of Electroelastic and Magnetoelastic Interactions. Springer, New York (2014)

    MATH  Google Scholar 

  82. Dowell, E.: A Modern Course in Aeroelasticity (Fifth revised and enlarged edition). Springer, New York (2015)

  83. Steindl, A., Troger, H.: Methods for dimension reduction and their application in nonlinear dynamics. Int. J. Solids Struct. 38(10–13), 2131–2147 (2001)

    MATH  Google Scholar 

  84. Rega, G., Troger, H.: Dimension reduction of dynamical systems: methods, models, applications. Nonlinear Dyn. 41, 1–15 (2005)

    MathSciNet  MATH  Google Scholar 

  85. http://www.euromech.org/structure/conference-committees/enocc

  86. http://www.euromech.org/colloquia

  87. http://www.cism.it/courses/

  88. Vakakis, A.F. (ed.): Advanced Nonlinear Strategies for Vibration Mitigation and System Identification. CISM Courses and Lectures, vol. 518, Springer, New York (2011)

  89. Wagg, D.J., Virgin, L. (eds.): Exploiting Nonlinear Behavior in Structural Dynamics. CISM Courses and Lectures, vol. 536, Springer, New York (2012)

    Google Scholar 

  90. Kerschen, G. (ed.): Modal Analysis of Nonlinear Mechanical Systems. CISM Courses and Lectures, vol. 555, Springer, New York (2014)

    MATH  Google Scholar 

  91. Lenci, S., Rega, G. (eds.): Global Nonlinear Dynamics for Engineering Design and System Safety. CISM Courses and Lectures, vol. 588, Springer Nature, New York (2018)

  92. Lacarbonara, W.: Obituary: Professor Ali H. Nayfeh 21 December 1933–27 March 2017. J. Sound Vib. 400, 680–683 (2017)

    Google Scholar 

  93. Younis, M.I.: In memoriam: Ali Hasan Nayfeh 1933–2017. Nonlinear Dyn. 88, 1535–1536 (2017)

    MathSciNet  MATH  Google Scholar 

  94. Balachandran, B., Younis, M.I., Shen, I.Y.(Steve): In Memoriam: Ali Hasan Nayfeh. J. Vib. Acoust. 139, 040101-1 (2017)

  95. Rega, G.: A tribute to Ali H. Nayfeh (1933-2017). In Kovacic, I., Lenci, S. (eds.) IUTAM Symposium on Exploiting Nonlinear Dynamics for Engineering Systems. IUTAM Book Series, Springer, Berlin (2019) (to appear)

  96. Nayfeh, A.H.: On direct methods for constructing nonlinear normal modes of continuous systems. J. Vibr. Control 1, 389–430 (1995)

    MathSciNet  MATH  Google Scholar 

  97. Nayfeh, A.H.: Resolving controversies in the application of the method of multiple scales and the generalized method of averaging. Nonlinear Dyn. 40(1), 61–102 (2005)

    MathSciNet  MATH  Google Scholar 

  98. Rega, G.: Book review: Nonlinear interactions: analytical, computational, and experimental methods. Meccanica 35, 583–585 (2000)

    Google Scholar 

  99. Rega, G.: Book review: Linear and nonlinear structural mechanics. Meccanica 40, 221–222 (2005)

    Google Scholar 

  100. Nayfeh, A.H.: Introduction to Perturbation Techniques. Wiley, New York (1980)

    MATH  Google Scholar 

  101. Verhulst, F.: Profits and pitfalls of timescales in asymptotics. SIAM Rev. 57(2), 255–274 (2015)

    MathSciNet  MATH  Google Scholar 

  102. Daqaq, M.F., Masana, R., Erturk, A., Quinn, D.D.: On the role of nonlinearities in vibratory energy harvesting: a critical review and discussion. Appl. Mech. Rev. 66(4), 040801 (2014)

    Google Scholar 

  103. Dou, S., Strachan, B.S., Shaw, S.W., Jensen, J.S.: Structural optimization for nonlinear dynamic response. Phil. Trans. R. Soc. A 373, 20140408 (2015)

    MathSciNet  MATH  Google Scholar 

  104. Rega, G., Lenci, S.: A global dynamics perspective for system safety from macro- to nanomechanics: analysis, control and design engineering. Appl. Mech. Rev. 67(5), 050802 (2015)

    Google Scholar 

  105. Porter, M.A., Kevrekidis, P.G., Daraio, G.: Granular crystals: nonlinear dynamics meets materials engineering. Phys. Today 68(11), 44–50 (2015)

    Google Scholar 

  106. Kochmann, D.M., Bertoldi, K.: Exploiting microstructural instabilities in solids and structures: from metamaterials to structural transitions. Appl. Mech. Rev. 69(5), 050801-1-24 (2017)

    Google Scholar 

  107. Wiercigroch, M., Rega, G.: Introduction to NDATED. In: Wiercigroch, M., Rega, G. (eds.) IUTAM Symposium on Nonlinear Dynamics for Advanced Technologies and Engineering Design, IUTAM Book Series 32, pp. v–viii. Springer, Berlin (2013)

Download references

Acknowledgements

The financial support of PRIN 2015 (No.2015JW9NJT), Italy, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Rega.

Ethics declarations

Conflicts of interest

The author declares that there is no conflict of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rega, G. Nonlinear dynamics in mechanics and engineering: 40 years of developments and Ali H. Nayfeh’s legacy. Nonlinear Dyn 99, 11–34 (2020). https://doi.org/10.1007/s11071-019-04833-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-04833-w

Keywords

Navigation