Skip to main content
Log in

How synaptic plasticity affects the stochastic resonance in a modular neuronal network

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This work mainly investigates how synaptic plasticity influences the stochastic resonance dynamics of delay-coupled FitzHugh–Nagumo neurons in a modular neuronal network subjected to bounded noise. This modular neuronal network is consisted of two small-world subnetworks. The couplings between different neurons are of synaptic plasticity, which is regulated by a modified Oja’s learning rule. Numerical results show that the classical phenomenon of stochastic resonance can occur at an intermediate amplitude of bounded noise on this network. Also, the result reveals that appropriately tuned delays can induce multiple stochastic resonances, appearing at every integer multiple of the period of weak period signal. Moreover, when incorporating synaptic plasticity into this modular neuronal network, we find that the bounded noise-induced stochastic resonance is almost quantitatively unchanged upon increasing synaptic learning rate, i.e., the phenomenon is robust to the synaptic plasticity. Interestingly, the delay-induced multiple stochastic resonances are slightly restrained by the increase in synaptic learning rate. These present findings could be helpful to understand the important role of synaptic plasticity on neural coding in realistic neuronal network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Data sharing is not applicable to this work as no datasets were generated or analyzed during the current study.

References

  1. Gammaitoni, L., Hänggi, P., Jung, P., Marchesoni, F.: Stochastic resonance. Rev. Mod. Phys. 70, 223 (1998)

    Article  Google Scholar 

  2. Wiesenfeld, K., Wellens, T., Buchleitner, A.: Stochastic resonance. Rep. Prog. Phys. 67, 45–105 (2004)

    Article  Google Scholar 

  3. Guo, D.Q., Li, C.G.: Stochastic resonance in Hodgkin-Huxley neuron induced by unreliable synaptic transmission. J. Theor. Biol. 308, 105–114 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Collins, J.J., Chow, C.C., Imhoff, T.T.: Stochastic resonance without tuning. Nature 376, 236–238 (1995)

    Article  Google Scholar 

  5. Gao, Z., Hu, B., Hu, G.: Stochastic resonance of small-world networks. Phys. Rev. E. 65, 016209 (2002)

    Article  Google Scholar 

  6. Yilmaz, E., Uzuntarla, M., Ozer, M., Perc, M.: Stochastic resonance in hybrid scale-free neuronal networks. Phys. A. 392, 5735–5741 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Liu, Y.Y., Sun, Z.K., Yang, X.L., Xu, W.: Dynamical robustness and firing modes in multilayer memristive neural networks of nonidentical neurons. Appl. Math. Comput. 409, 126384 (2021)

    MathSciNet  MATH  Google Scholar 

  8. Hilgetag, C.C., Burns, G.A., O’neill, M.A., Scannell, J.W., Young, M.P.: Anatomical connectivity defines the organization of clusters of cortical areas in the macaque and the cat. Philos. Trans. R. Soc. B. 355, 91–92 (2000)

    Article  Google Scholar 

  9. Zamora-Lopez, G., Zhou, C.S., Kurths, J.: Graph analysis of cortical networks reveals complex anatomical communication substrate. Chaos 19, 015117 (2009)

    Article  Google Scholar 

  10. Yang, X.L., Yu, Y.H., Sun, Z.K.: Autapse-induced multiple stochastic resonance in a modular neuronal network. Chaos 27, 083117 (2017)

    Article  MathSciNet  Google Scholar 

  11. Yu, H.T., Wang, J., Liu, C., Deng, B., Wei, X.L.: Stochastic resonance on a modular neuronal network of small-world subnetworks with a subthreshold pacemaker. Chaos 21, 047502 (2011)

    Article  MATH  Google Scholar 

  12. Pierson, D., Pantazelou, E., Dames, C., Moss, F.: Stochastic resonance on a circle. Phys. Rev. L. 72, 2125–2129 (1994)

    Article  Google Scholar 

  13. Nozaki, D., Mar, D.J., Grigg, P., Collins, J.J.: Effects of colored noise on Stochastic resonance in sensory neurons. Phys. Rev. L. 82, 2402–2405 (1999)

    Article  Google Scholar 

  14. Guo, Y.F., Xi, B., Wei, F., Tan, J.G.: Stochastic resonance in FitzHugh–Nagumo neural system driven by correlated non-Gaussian noise and Gaussian noise. Int. J. Mod. Phys. B. 31, 1750264 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Bezrukov, S.M., Vodyanoy, I.: Noise-induced enhancement of signal transduction across voltage-dependent ion channels. Nature 378, 362–364 (1995)

    Article  Google Scholar 

  16. Yu, H.T., Li, K., Guo, X.M., Wang, J., Deng, B., Liu, C.: Firing rate oscillation and stochastic resonance in cortical networks with electrical–chemical synapses and time delay. IEEE. T. Fuzzy. Syst. 28, 1–1 (2018)

    Google Scholar 

  17. Yung, K.L., Lei, Y.M., Xu, Y.: Stochastic resonance in the Fitz-Hugh Nagumo system driven by bounded noise. Chin. Phys. B. 19, 010503 (2010)

    Article  Google Scholar 

  18. Yang, X.L., Jia, Y.B., Zhang, L.: Impact of bounded noise and shortcuts on the spatiotemporal dynamics of neuronal networks. Phys. A. 393, 617–623 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Wang, Q.Y., Perc, M., Duan, Z.S., Chen, G.R.: Delay-induced multiple stochastic resonances on scale-free neuronal networks. Chaos 19, 023112 (2009)

    Article  Google Scholar 

  20. Gan, C.B., Perc, M., Wang, Q.Y.: Delay-aided stochastic multiresonances on scale-free FitzHugh-Nagumo neuronal networks. Chin. Phys. B. 19, 040508 (2010)

    Article  Google Scholar 

  21. Rossoni, E., Chen, Y.H., Ding, M.Z., Feng, J.F.: Stability of synchronous oscillations in a system of Hodgkin-Huxley neurons with delayed diffusive and pulsed coupling. Phys. Rev. E. 71, 061904 (2005)

    Article  MathSciNet  Google Scholar 

  22. Yang, X.L., Senthilkumar, D.V., Kurths, J.: Impact of connection delays on noise-induced spatiotemporal patterns in neuronal networks. Chaos 22, 043150 (2012)

    Article  MathSciNet  Google Scholar 

  23. Citri, A., Malenka, R.C.: Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacol. 33, 18–41 (2008)

    Article  Google Scholar 

  24. Martin, S.J., Grimwood, P.D., Morris, R.G.: Synaptic plasticity and memory: an evaluation of the hypothesis. Ann. Rev. Neurosci. 23, 649–711 (2000)

    Article  Google Scholar 

  25. Han, F., Wang, Z.J., Fang, J.A.: Excitement and synchronization of small-world neuronal networks with short-term synaptic plasticity. Int. J. Neur. Syst. 21, 415–425 (2011)

    Article  Google Scholar 

  26. Pérez, T., Uchida, A.: Reliability and synchronization in a delay-coupled neuronal network with synaptic plasticity. Phys. Rev. E. 83, 061915 (2011)

    Article  Google Scholar 

  27. Zucker, R.S., Regehr, W.G.: Short-term synaptic plasticity. Annu. Rev. Neurosci. 64, 355–405 (2002)

    Google Scholar 

  28. Gerstner, W., Kistler, W.M.: Spiking Neuron Models: Single Neurons, Populations, Plasticity. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  29. Kempter, R., Gerstner, W., Hemmen, J.V.: Hebbian learning and spiking neurons. Phys. Rev. E. 59, 4498–4514 (1999)

    Article  MathSciNet  Google Scholar 

  30. Oja, E.: Oja learning rule. Scholarpedia. 3, 3612 (2008)

    Article  Google Scholar 

  31. Oja, E.: A simplified neuron model as a principal component analyzer. J. Math. Biol. 15, 267–273 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  32. Song, S., Miller, K.D.: Competitive Hebbian learning through spike-timing-dependent synaptic plasticity. Nat. Neurosci. 3, 919–926 (2000)

    Article  Google Scholar 

  33. Xie, H.J., Gong, Y.B., Wang, Q.: Effect of spike-timing-dependent plasticity on coherence resonance and synchronization transitions by time delay in adaptive neuronal networks. Eur. Phys. J. B. 89, 1–7 (2016)

    Article  MathSciNet  Google Scholar 

  34. Matveev, V., Wang, X.J.: Differential short-term synaptic plasticity and transmission of complex spike trains: to depress or to facilitate? Cereb. Cortex. 10, 1143–1153 (2000)

    Article  Google Scholar 

  35. Zhang, H., Wang, Q., Perc, M., Chen, G.: Synaptic plasticity induced transition of spike propagation in neuronal networks. Commun. Nonlinear. Sci. Numer. Simul. 18, 601–615 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  36. Yao, Z.L., Yang, X.L., Sun, Z.K.: How synaptic plasticity influences spike synchronization and its transitions in complex neuronal network. Chaos 28, 083120 (2018)

    Article  Google Scholar 

  37. Kube, K., Herzog, A., Michaelis, B., de Lima, A.D., Voigt, T.: Spike-timing-dependent plasticity in small-world networks. Neurocomputing 71, 1694–1704 (2008)

    Article  Google Scholar 

  38. Newman, M.E.J., Watts, D.J.: Renormalization group analysis of the small-world network model. Phys. Lett. A. 263, 341–346 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  39. Fitzhugh, R.: Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1, 445–466 (1961)

    Article  Google Scholar 

  40. Cai, G.Q., Wu, C.: Modeling of bounded stochastic processes. Probab. Eng. Mech. 19, 197–203 (2004)

    Article  Google Scholar 

  41. Tessone, C.J., Mirasso, C., Toral, R., Gunton, J.D.: Diversity-induced resonance. Phys. Rev. Lett. 97, 194101 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

This work is partially supported by the National Natural Science Foundation of China (Grant No. 11972217).

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XiaoLi Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tuo, X., Yang, X. How synaptic plasticity affects the stochastic resonance in a modular neuronal network. Nonlinear Dyn 110, 791–802 (2022). https://doi.org/10.1007/s11071-022-07620-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07620-2

Keywords

Navigation