Skip to main content
Log in

Dynamics and Infradian Rhythmics of Thermal/Pain Sensitivity of the Helix Mollusc under the Action of Electromagnetic Fields

  • Published:
Neurophysiology Aims and scope

We measured characteristics of thermal/pain (th/p) sensitivity of Helix albescens (threshold and latency of the avoidance behavioral reaction) under conditions of the hot-plate test. As was found, weakening (shielding) of the background electromagnetic field, as well as the action of low-intensity radiations of extremalfrequency ranges, induced two-phase changes of these characteristics within a 21-day-long observation period with different manifestations and durations of the phases. Initial increase in the nociceptive sensitivity (hyperalgesia) was followed by an analgesic effect with subsequent return of the examined indices to the initial level. Low-intensity electromagnetic influences also induced modifications of the infradian rhythmics of th/p sensitivity of the molluscs; this was manifested in changes of the spectra and phase shifts of the identified rhythms and trends toward modulation of the amplitudes of these rhythmic components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. N. Bingi and A. V. Savin, “Physical problems related to the action of weak magnetic fields on biological systems,” Usp. Fiziol. Nauk, 173, No. 3, 265–300 (2003).

    Article  Google Scholar 

  2. “The law of Ukraine ‘On the Defense of Animals against Cruel Treatment,’ February 21, 2006, No. 3447-IV,” Vidomosti Verkhovnoyi Rady Ukrainy, No. 27, 990 (2006).

  3. M. Kavaliers and K.-P. Ossenkopp, “Opioid systems and magnetic field effects in the land snail, Cepaea nemoralis,” Biol. Bull., 180, 301–309 (1991).

    Article  Google Scholar 

  4. F. S. Prato, J. J. L. Carson, K.-P. Ossenkopp, et al., “Possible mechanisms by which extremely low frequency magnetic fields affect opioid function,” FASEB J., 9, 807–814 (1995).

    CAS  PubMed  Google Scholar 

  5. M. Kavaliers and K.-P. Ossenkopp, “Exposure to rotating magnetic fields alters morphine-induced behavioural responses in two strains of mice,” Neuropharmacology, 89, 440–443 (1984).

    Google Scholar 

  6. F. S. Prato, J. A. Robertson, D. Desjardins, et al., “Daily repeated magnetic field shielding induces analgesia in CD-1 mice,” Bioelectromagnetics, 26, No. 2, 109–117 (2005).

    Article  PubMed  Google Scholar 

  7. M. Achaval, M. A. P. Penha, A. Swarowsky, et al., “The terrestrial Gastropoda Megalobulimus abbreviatus as a useful model for nociceptive experiments. Effects of morphine and naloxone on thermal avoidance behavior,” Brazil. J. Med. Biol. Res., 38, No. 1, 73–80 (2005).

    CAS  Google Scholar 

  8. M. K. Leung and G. B. Stefano, “Comparative neurobiology of opioids in invertebrates with special attention to senescent alterations,” Prog. Neurobiol., 28, 131–159 (1987).

    Article  CAS  PubMed  Google Scholar 

  9. L. M. Dalton and P. S. Widdowson, “The involvement of opioid peptides in stress-induced analgesia in the slug Arion ater,” Peptides, 10, 9–13 (1989).

    Article  CAS  PubMed  Google Scholar 

  10. E. T. Walters and M. T. Erickson, “Directional control and the functional organization of defensive responses in Aplysia,” J. Comp. Physiol., Ser. A, 159, 339–351 (1986).

    Article  CAS  Google Scholar 

  11. N. A. Agadzhanyan, A. A. Bashkirova, and I. G. Vlasova, “On physiological mechanisms of biological rhythms,” Usp. Fiziol. Nauk, 18, No. 4, 80–104 (1987).

    Google Scholar 

  12. B. M. Vladimirskii, N. A. Temour’yants, and V. S. Martynyuk, Cosmic Weather and Our Life [in Russian], Fryazino, Vek Publ. House (2004).

  13. P. G. Sokolove, G. M. Beiswanger, D. J. Prior, et al., “A circadian rhythm in the locomotor behavior of the giant garden slug Limax miximus,” J. Exp. Biol., 66, 47–64 (1977).

    CAS  PubMed  Google Scholar 

  14. L. P. Zann, “Relationships between intertidal zonation and circadian rhythmicity in littoral gastropods,” Marine Biol., 18, 243–250 (1973).

    Article  Google Scholar 

  15. K. P. Rao, “Tidal rhythmicity of rate of water propulsion in Mytilus and its modifiability by transplantation,” Biol. Bull., 106, 353–359 (1954).

    Article  Google Scholar 

  16. F. S. Prato, M. Kavaliers, and A. W. Thomas, “Extremely low frequency magnetic fields can either increase or decrease analgesia in the land snail depending on field and light conditions,” Bioelectromagnetics, 21, 287–301 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. F. S. Prato, M. Kavaliers, and J. J. L. Carson, “Behavioral evidence that magnetic field effects in the land snail, Cepaea nemoralis, might not depend on magnetite or induced electric currents,” Bioelectromagnetics, 17, 123–130 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. V. G. Vishnevskii, A. S. Kostyuk, and N. A. Temour’yants, “A set for the measurements of the parameters of pain sensitivity of terrestrial molluscs,” Fizika Zhivogo, 17, No. 2, 174–178 (2009).

    Google Scholar 

  19. S. N. Lapach, A. V. Chubenko, and P. N. Babich, Statistical Techniques Using Excel in Medical/Biological Studies [in Russian], Modmon, Kyiv (2000).

    Google Scholar 

  20. I. P. Yemel’yanov, Forms of Oscillations in Biorhythmology [in Russian], Nauka, Novosibirsk (1976).

    Google Scholar 

  21. E. Choleris, Del Seppia, A. W. Thomas, et al., “Shielding, but not zeroing of the ambient magnetic field reduces stress-induced analgesia in mice,” Proc. Biol. Sci. Roy. Soc. (London, Canada), 269, 193–201 (2002).

    Article  CAS  Google Scholar 

  22. F. Cirulli, De Acetis, and L. E. Alleva, “Assessment of pain in rodents by using standard laboratory techniques: an ethological perspective aimed at reducing suffering,” in: Progress in the Reduction, Refinement and Replacement of Animal Experimentation, M. Balin, A. M. Zeller, and M. E. Halden (eds.), Elsevier, Amsterdam (2000), pp. 1127–1135.

  23. N. N. Shabatura, V. G. Tkachouk, V. A. Fed’ko, et al., “Period of infradian rhythms of the intensity of physiological processes in the human organism,” Fiziol. Zh. Ukr. SSR, 33, No. 2, 10–16 (1987).

    CAS  Google Scholar 

  24. E. N. Chuyan and É. R. Dzheldubayeva, Mechanisms of Antinociceptive Action of Low-Intensity Millimeter-Range Irradiation [in Russian], DIP, Simferopol’ (2006).

  25. H. G. Schweiger, S. Berger, and H. Kretschmer, “Evidence for a circaseptan and a circasemiseptan growth response to light/dark cycle shifts in nucleated and enucleated Acetabularia cells, respectively,” Proc. Natl. Acad. Sci. USA Cell Biol., 83, 8619–8623 (1983).

    Article  Google Scholar 

  26. R. P. Kane, “Power spectrum analysis of geomagnetic indices (English),” Proc. Ind. Acad. Sci. (Earth Planet Sci.), 95, No. 1, 1–12 (1986).

    Google Scholar 

  27. B. M. Vladimirskii, “Solar-Earth relations in biology and a phenomen of ‘catching’ the frequency,” in: Problems of Cosmic Biology [in Russian], Vol. 43, Nauka, Moscow (1982), pp. 166–173.

    Google Scholar 

  28. A. V. Shekhotkin, Effect of Alternating Extralow-Frequency Magnetic Field on the Infradian Rhythmics of Quantitative and Functional Characteristics of Blood Leukocytes in Intact and Epiphysisectomized Rats [in Russian], Abstr. of Cand. Thesis, Biol. Sci., Simferopol’ (1995).

  29. L. Strigun, E. Chirkova, G. Grigoreva, et al., “Chronobiological analysis of peripheral lymphocyte dehydrogenase activities in rats with Walker 256 carcinosarcoma (English),” Anti-Cancer Drugs, 2, 305–310 (1991).

    Article  CAS  PubMed  Google Scholar 

  30. N. A. Temour’yants, V. B. Makeyev, and V. I. Malygina, “Effect of weak alternating extremely lowfrequency magnetic fields on infradian rhythmics of the sympathoadrenal system in rats,” Biofizika, 37, No. 4, 653–655 (1992).

    Google Scholar 

  31. N. A. Temour’yants, V. A. Minko, and E. I. Nagaeva, “Peculiarities of the infradian rhythmics of the bactericide systems of blood neutrofils in rats with different individual specificities and changes of this rhythmics upon the action of extremely low-frequency alternating MF,” Geofiz. Processy Biosfera, 4, Nos. 1/2, 31–39 (2005).

    Google Scholar 

  32. Yoon Mee Choi, Ji Hoon Jeong, Jeong Soo Kim, et al., “Extremely low frequency magnetic field exposure modulates the diurnal rhythm of the pain threshold in mice,” Bioelectromagnetics, 24, 206–210 (2003).

    Article  Google Scholar 

  33. R. A. Wever, The Circadian System of Man: Results of Experiments Under Temporal Isolation, Springer, New York (1979).

    Google Scholar 

  34. Yu. I. Borodin and A. Yu. Letyagin, “Reaction of circadian rhythms of the lymphoid system on profound shielding from the Earth geomagnetic field,” Byull. Éksp. Biol. Med., 2, 191–193 (1990).

    Google Scholar 

  35. BV. S. Martynyuk, N. A. Temour’yants, and O. B. Moskovchouk, “Correlation of biophysical parameters of biologically active points and variations of geliogeographical factors,” Biofizika, 46, No. 5, 905–909 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Temour’yants.

Additional information

Neirofiziologiya/Neurophysiology, Vol. 42, No. 4, pp. 329-339, July-August, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Temour’yants, N.A., Kostyuk, A.S. & Tumanyants, K.N. Dynamics and Infradian Rhythmics of Thermal/Pain Sensitivity of the Helix Mollusc under the Action of Electromagnetic Fields. Neurophysiology 42, 276–285 (2011). https://doi.org/10.1007/s11062-011-9160-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-011-9160-1

Keywords

Navigation