Skip to main content
Log in

Involvement of Melatonin in Changes in Nociception in Mollusks and Mice in Long-Term Electromagnetic Screening

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Electromagnetic screening for several days induced triphasic changes in nociception in mollusks and mice: an initial phase of hyperalgesia was followed by an antinociceptive phase and subsequent normalization of measures of nociception. In mollusks, these changes developed more slowly and the hyperalgesia phase was more marked than in mice. Daily administration of melatonin to the animals eliminated the screening-induced hyperalgesia and induced an earlier and more marked antinociceptive effect. These changes appeared to be linked with initial suppression of melatonin secretion by electromagnetic screening, resulting in hyperalgesia. Melatonin secretion then increased, which was apparent as an increase in the antinociceptive effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. V. Aleksandrov, The Ecological Role of Electromagnetism, St. Petersburg State Pedagogical University Press, St. Petersburg (2010).

    Google Scholar 

  2. V. N. Anisimov, “The epiphysis, melatonin, and aging,” in: Chronobiology and Chronomedicine: A Textbook, Med. Inform. Agency, Moscow (2012), pp. 284–333.

  3. E. B. Arushanyan, and L. B. Arushanyan, “The modulatory properties of epiphyseal melatonin,” Probl. Endokrinol., 37, No. 3, 65–68 (1991).

    Google Scholar 

  4. V. Borovikov, Statistica. The Art of Analyzing Data by Computer. For Professionals, Piter, St. Petersburg (2003)

    Google Scholar 

  5. A. M. Vasilenko, O. G. Yanovskii, and O. V. Koptelev, “Correlation of pain sensitivity and humoral immune responses in mice in heat stimulation,” Byull. Eksperim. Biol. Med., No. 4, 405–408 (1995).

  6. A. P. Dubrov, The Geomagnetic Field and Life, Gidrometeoizdat, Leningrad (1974).

    Google Scholar 

  7. European Convention on the Protection of Vertebrate Animals Used for Experimental and Other Scientifi c Purposes [Russian translation], Strasburg, March 18, 1986.

  8. R. M. Zaslavskaya, E. A. Shcherban’, M. M. Teiblyum, and S. I. Logvinenko, “The efficacy of melatonin as an adaptogen for the prophylaxis and treatment of meteosensitivity in patients with arterial hypertension and ischemic heart disease,” in: Chronobiology and Chronomedicine. A Textbook, Med. Inform. Agency, Moscow (2012).

  9. I. M. Kvetnoi, N. T. Raikhlin, V. V. Yuzhakov, and I. E. Ingel’, “Extrapineal melatonin: its place and role in the neuroendocrine regulation of homeostasis,” Byull. Eksperim. Biol. Med., 127, No. 4, 364–370 (1999)

    CAS  Google Scholar 

  10. F. I. Komarov, S. I. Rappoport, N. K. Malinovskaya, and V. N. Anisomova, Melatonin in Heath and Disease, Medpraktika, Moscow (2004).

    Google Scholar 

  11. S. N. Lapach, A. V. Chubenko, and P. M. Babich, Statistical Methods in Biomedical Studies using Excel, Morion, Kiev (2000).

    Google Scholar 

  12. A. S. Presman, Electromagnetic Fields and Living Nature, Nauka, Moscow (1968).

    Google Scholar 

  13. N. A. Temur’yants, V. G. Vishnevs’kii, O. S. Kostyuk, and V. B. Makeev, Ukrainian Patent No. 48094, Byull., No. 5 (2010).

  14. N. A. Temur’yants, B. M. Vladimirskii, and O. G. Tishkin, Extremely Low Frequency Electromagnetic Signals in the Biological World, Nauk. Dumka, Kiev (1992).

    Google Scholar 

  15. N. A. Temur’yants and A. S. Kostyuk, “The role of the opioid system in modulating thermonociceptive sensitivity in mollusks exposed to weak electromagnetic factors,” Neirofiziologiya, 43, No. 5, 432–441 (2011).

    Google Scholar 

  16. N. A. Temur’yants, A. V. Shekhotkin, and V. S. Martynyuk, “The roles of a number of components of the diffuse neuroendocrine system in realizing magnetobiological actions,” Biofizika, 46, No. 5, 901–904 (2001).

    Google Scholar 

  17. N. A. Temur’yants, A. V. Shekhotkin, and C. A. Nasilevich, “Changes in infradian rhythms of a number of physiological processes controlled by the epiphysis in epiphysectomized rats exposed to an alternating extremely high frequency magnetic field,” Biofizika, 43, No. 4, 594–599 (1998).

    Google Scholar 

  18. N. A. Temur’yants, A. V. Shekhotkin, and V. A. Nasilevich, “The magnetic sensitivity of the epiphysis,” Biofizika, 43, No. 5, 761–765 (1998).

    Google Scholar 

  19. Yu. A. Kholodov, “The body and magnetic fields,” Usp. Fiziol. Nauk., 13, No. 2, 48–67 (1982).

    PubMed  Google Scholar 

  20. E. N. Chuyan, “Changes in blood melatonin content in rats exposed to low-intensity, extremely high frequency electromagnetic radiation,” in: Uch. Zap. Tavrich. Nats. Univ., Ser. Biol. Khimiya, 17, No. 56 (1), 99–107 (2004).

  21. D. Abran, M. Anctil, and A. Ali, “Melatonin activity rhythms in eyes and cerebral ganglia of Aplysia californica,” Gen. Comp. Endocrinol., 96, No. 2, 215–222 (1994).

    Article  CAS  PubMed  Google Scholar 

  22. M. Ambriz-Tutui, H. I. Rocha-Gonzalez, S. L. Cruz, and V. Granados-Soto, “Melatonin: a hormone that modulates pain,” Life Sci., 84, No. 15–16, 489–498 (2009).

    Article  Google Scholar 

  23. M. Asashima, K. Shimada, and C. J. Pfeiffer, “Magnetic shielding induces early developmental abnormalities in the newt, Cynops pyrrhogaster,” Bioelectromagnetics, 12, No. 4, 215–224 (1991).

    Article  CAS  PubMed  Google Scholar 

  24. P. M. Balaban, N. I. Bravarenko, and A. N. Kuznetzov, “Influence of a stationary magnetic field on bioelectric properties of snail neurons,” Bioelectromagnetics, 11, No. 1, 13–25 (1990).

    Article  CAS  PubMed  Google Scholar 

  25. A. Blanc, B. Vivien-Roels, P. Pévet, et al., “Melatonin and 5-methyoxytryptophol (5-ML) in nervous and/or neurosensory structures of a gastropod mollusc (Helix aspersa maxima): synthesis and diurnal rhythms,” Gen. Comp. Endocrinol., 131, No. 2, 168–175 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. J. B. Burch, J. S. Reif, C. A. Pitrat, et al., “Cellular telephone use and excretion of a urinary melatonin metabolite,” in: Research in Biological Effects of Electric and Magnetic Fields from the Generation, Delivery, and Use of Electricity: Abstract Book, San Diego, 52, (1997).

  27. E. Choleris, C. Del Seppia, A. W. Thomas, et al., “Shielding, but not zeroing of the ambient magnetic field reduces stress-induced analgesia in mice,” Proc. Biol. Soc. Roy. Soc., 269, 193–201 (2002).

    Article  CAS  Google Scholar 

  28. U. Chuchuen, M. Ebadi, and P. Govitrapong, “The stimulatory effect of mu- and delta-opioid receptors on bovine pinealocyte melatonin synthesis,” J. Pineal Res., 37, No. 4, 223–229 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. G. Cremer-Bartels, K. Krause, and H. J. Kuchle, “Influence of low magnetic field strength variations on the retina and pineal gland of quail and humans,” Graefes Arch. Clin. Exp. Ophthalmol., 220, No. 5, 248–252 (1983).

    Article  CAS  PubMed  Google Scholar 

  30. C. Del Seppia, P. Luschi, S. Ghione, et al., “Exposure to a hypogeomagnetic field or to oscillating magnetic fields similarly reduce stress-induced analgesia in C57 male mice,” Life Sci., 66, No. 14, 1299–1306 (2000).

    Article  PubMed  Google Scholar 

  31. A. H. Frey, “Electromagnetic field interactions with biological systems,” FASEB J., 274, 272–281 (1993).

    Google Scholar 

  32. S. Gangi and O. A. Johansson, “Theoretical model based upon mast cells and histamine to explain the recently proclaimed sensitivity to electric and/or magnetic fields in humans,” Med. Hypothesis., 54, 663–6721 (2000).

    Article  CAS  Google Scholar 

  33. R. Hardeland and B. Poeggeler, “Non-vertebrate melatonin,” J. Pineal Res., 34, 233–241 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. M. Itoh, T. Shinozawa, and Y. Sumi, “Circadian rhythms of melatonin-synthesizing enzyme activities and melatonin levels in planarians,” Brain Res., 830, No. 1, 165–173 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. J. Juutilainen, R. G. Stevens, L. E. Anderson, et al., “Nocturnal 6-hydroxymelatonin sulfate excretion in female workers exposed to magnetic fields,” J. Pineal Res., 28, No. 2, 97–104 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. M. Kato, K. Honma, R. Shigemitsu, and Y. Shiga, “Effects of exposure to a circularly polarized 50-Hz magnetic field on plasma and pineal melatonin levels in rats,” Bioelectromagnetics, 4, No. 2, 97–106 (1993).

    Article  Google Scholar 

  37. M. L. Lakin, C. H. Miller, M. L. Stott, and W. D. Winters, “Involvement of the pineal gland and melatonin in murine analgesia,” Life Sci., 29, No. 24, 2543–2551 (1981).

    Article  CAS  PubMed  Google Scholar 

  38. J. F. László, and L. Hernádi, “Whole body static magnetic field exposure increases thermal nociceptive threshold in the snail, Helix pomatia,” Acta Biol. Hung., 63, No. 4, 441–452 (2012).

    Article  PubMed  Google Scholar 

  39. J. C. Lin (ed.), Electromagnetic Fields in Biological Systems, CRC Press (2012).

  40. Mo Wei-Chuan, Liu Ying, and He Rong-Qiao, “A biological perspective of the hypomagnetic field: from definition towards mechanism,” Progr. Biochem. Biophys., 39, No. 9, 835–842 (2012).

    Google Scholar 

  41. M. Morita, F. Hall, J. B. Best, and W. Gern, “Photoperiodic modulation of cephalic melatonin in planarians,” J. Exp. Zool., 241, 383–388 (1987).

    Article  CAS  PubMed  Google Scholar 

  42. N. Nittby, M. K. Moghadam, W. Sun, et al., “Analgetic effects of non-thermal GSM-1900 radiofrequency electromagnetic fields in the land sail Helix pomatia,” Int. J. Radiat. Biol., 88, No. 3, 245–252 (2012).

    Article  CAS  PubMed  Google Scholar 

  43. D. H. Pfl uger and C. E. Minder, “Effects of exposure to 16.7 Hz magnetic fields on urinary 6-hydroxymelatonin sulfate excretion of Swiss railway workers,” J. Pineal Res., 21, 91–100 (1996).

    Article  Google Scholar 

  44. F. S. Prato, M. Kavaliers, and A. W. Thomas, “Extremely low frequency magnetic fields can either increase or decrease analgaesia in the land snail depending on field and light conditions,” Bioelectromagnetics, 21, 287–301 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. F. S. Prato, J. A. Robertson, D. Desjardins, et al., “Daily repeated magnetic field shielding induces analgesia in CD-1 mice,” Bioelectromagnetics, 26, 109–117 (2005).

    Article  PubMed  Google Scholar 

  46. R. J. Reiter, “Melatonin: clinical relevance,” Best Pract. Res. Clin. Endocrinol. Metab., 17, 276–285 (2003).

    Article  Google Scholar 

  47. L. A. Rosen, I. Barber, and B. Lyle Daniel, “A 0.5 G, 60 Hz magnetic field suppresses melatonin production in pinealocytes,” Bioelectromagnetics, 19, No. 2, 123–127 (1998).

    Article  CAS  PubMed  Google Scholar 

  48. S. H. Samuels, “Jet lag and travel fatigue: a comprehensive management plan for sport medicine physicians and high-performance support teams,” Clin. J. Sport Med., 22, No. 3, 268 (2012)

    Article  PubMed  Google Scholar 

  49. B. Selmaoui and Y. Touitou, “Sinusoidal 50 Hz magnetic fields depress rat pineal NAT activity and serum melatonin: role of duration and intensity of exposure,” Life Sci., 57, 1351–1358 (1995).

    Article  CAS  PubMed  Google Scholar 

  50. V. Srinivasan, E. C. Lauterbach, K. U. Ho, et al., “Melatonin in antinociception: its therapeutic applications,” Curr. Neuropharmacol., 10, No. 2, 167–178 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. A. W. Wood, S. M. Armstrong, M. L. Sait, et al., “Changes in human plasma melatonin profiles in response to 50 Hz magnetic field exposure,” J. Pineal Res., 25, No. 2, 116–127 (1998).

    Article  CAS  PubMed  Google Scholar 

  52. C. X. Yu, G. C. Wu, S. F. Xu, and C. H. Chen, “Melatonin influences the release of endogenous opioid peptides in rat periaqueductal gray,” Sheng Li Xue Bao, 52, No. 3, 207–210 (2000).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Kostyuk.

Additional information

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 99, No. 11, pp. 1333–1341, November, 2013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Temur’yants, N.A., Kostyuk, A.S. & Tumanyants, K.N. Involvement of Melatonin in Changes in Nociception in Mollusks and Mice in Long-Term Electromagnetic Screening. Neurosci Behav Physi 45, 664–669 (2015). https://doi.org/10.1007/s11055-015-0126-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-015-0126-4

Keywords

Navigation