Skip to main content
Log in

Identification and transcript analysis of two glutamate decarboxylase genes, CsGAD1 and CsGAD2, reveal the strong relationship between CsGAD1 and citrate utilization in citrus fruit

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Glutamate decarboxylase (GAD, EC 4.1.1.15) has been suggested to be a key, regulatory point in the biosynthesis of γ-aminobutyrate (GABA) and in the utilization of citric acid through GABA shunt pathway. In this study we discovered two GAD genes, named as CsGAD1 and CsGAD2, in citrus genome database and then successfully cloned. Both CsGAD1 and CsGAD2 have a putative pyridoxal 5-phosphate binding domain in the middle region and a putative calmodulin-binding domain at the carboxyl terminus. Gene structure analysis showed that much difference exists in the size of exons and introns or in cis-regulatory elements in promoter region between the two GAD genes. Gene expression indicated that CsGAD1 transcript was predominantly expressed in flower and CsGAD2 transcript was predominantly expressed in fruit juice sacs; in the ripening fruit, CsGAD1 transcript level was at least 2-time higher than CsGAD2 transcript level. Moreover, CsGAD1 transcript level was increased significantly along with the increase of GAD activity and accompanied by a significant decrease of titratable acid (TA), suggesting that it is CsGAD1 rather than CsGAD2 plays a role in the citric acid utilization during fruit ripening. In addition, injection of abscisic acid and foliar spray of K2SO4 significantly increased the TA content of Satsuma mandarin, and significantly decreased GAD activity as well as CsGAD1 transcript, further suggesting the important role of CsGAD1 in the citrate utilization of citrus fruit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Marenco S, Savostyanova AA, van der Veen JW, Geramita M, Stern A, Barnett AS, Kolachana B, Radulescu E, Zhang F, Callicott JH, Straub RE, Shen J, Weinberger DR (2010) Genetic modulation of GABA levels in the anterior cingulate cortex by GAD1 and COMT. Neuropsychopharmacology 35(8):1708–1717

    PubMed Central  CAS  PubMed  Google Scholar 

  2. Shimajiri Y, Oonishi T, Ozaki K, Kainou K, Akama K (2013) Genetic manipulation of the γ-aminobutyric acid (GABA) shunt in rice: overexpression of truncated glutamate decarboxylase (GAD2) and knockdown of γ-aminobutyric acid transaminase (GABA-T) lead to sustained and high levels of GABA accumulation in rice kernels. Plant Biotechnol J 11(5):594–604

    Article  CAS  PubMed  Google Scholar 

  3. Akihiro T, Koike S, Tani R, Tominaga T, Watanabe S, Iijima Y, Aoki K, Shibata D, Ashihara H, Matsukura C, Akama K, Fujimura T, Ezura H (2008) Biochemical mechanism on GABA accumulation during fruit development in tomato. Plant Cell Physiol 49(9):1378–1389

    Article  CAS  PubMed  Google Scholar 

  4. Cercós M, Soler G, Iglesias D, Gadea J, Forment J, Talón M (2006) Global analysis of gene expression during development and ripening of citrus fruit flesh. A proposed mechanism for citric acid utilization. Plant Mol Biol 62(4–5):513–527

    Article  PubMed  Google Scholar 

  5. Degu A, Hatew B, Nunes-Nesi A, Shlizerman L, Zur N, Katz E, Fernie AR, Blumwald E, Sadka A (2011) Inhibition of aconitase in citrus fruit callus results in a metabolic shift towards amino acid biosynthesis. Planta 234(3):501–513

    Article  CAS  PubMed  Google Scholar 

  6. Shelp BJ, Bown AW, McLean MD (1999) Metabolism and functions of gamma-aminobutyric acid. Trends Plant Sci 4(11):446–452

    Article  PubMed  Google Scholar 

  7. Fait A, Fromm H, Walter D, Galili G, Fernie AR (2008) Highway or byway: the metabolic role of the GABA shunt in plants. Trends Plant Sci 13(1):14–19

    Article  CAS  PubMed  Google Scholar 

  8. Bouché N, Fromm H (2004) GABA in plants: just a metabolite? Trends Plant Sci 9(3):110–115

    Article  PubMed  Google Scholar 

  9. Shelp BJ, Bozzo GG, Zarei A, Simpson JP, Trobacher CP, Allan WL (2012) Strategies and tools for studying the metabolism and function of gamma-aminobutyrate in plants: II integrated analysis. Botany 90:781–793

    Article  CAS  Google Scholar 

  10. Adeghate E, Ponery AS (2002) GABA in the endocrine pancreas: cellular localization and function in normal and diabetic rats. Tissue Cell 34(1):1–6

    Article  CAS  PubMed  Google Scholar 

  11. Hayakawa K, Kimura M, Kasaha K, Matsumoto K, Sansawa H, Yamori Y (2004) Effect of a gamma-aminobutyric acid-enriched dairy product on the blood pressure of spontaneously hypertensive and normotensive Wistar–Kyoto rats. Br J Nutr 92(3):411–417

    Article  CAS  PubMed  Google Scholar 

  12. Amin Z, Mason GF, Cavus I, Krystal JH, Rothman DL, Epperson CN (2006) The interaction of neuroactive steroids and GABA in the development of neuropsychiatric disorders in women. Pharmacol Biochem Behav 84(4):635–643

    Article  CAS  PubMed  Google Scholar 

  13. Akama K, Kanetou J, Shimosaki S, Kawakami K, Tsuchikura S, Takaiwa F (2009) Seed-specific expression of truncated OsGAD2 produces GABA-enriched rice grains that influence a decrease in blood pressure in spontaneously hypertensive rats. Transgenic Res 18(6):865–876

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Gladkevich A, Korf J, Hakobyan VP, Melkonyan KV (2006) The peripheral GABAergic system as a target in endocrine disorders. Auton Neurosci 124(1–2):1–8

    Article  CAS  PubMed  Google Scholar 

  15. Ueno H (2000) Enzymatic and structural aspects on glutamate decarboxylase. J Mol Catal B Enzym 10:67–79

    Article  CAS  Google Scholar 

  16. Snedden WA, Koustia N, Baum G, Fromm H (1996) Activation of a recombinant petunia glutamate decarboxylase by calcium/calmodulin or by a monoclonal antibody which recognizes the calmodulin binding domain. J Biol Chem 271:4148–4153

    Article  CAS  PubMed  Google Scholar 

  17. Gut H, Dominici P, Pilati S, Astegno A, Petoukhov MV, Svergun DI, Gr uuml tter MG, Capitani G (2009) A common structural basis for pH- and calmodulin-mediated regulation in plant glutamate decarboxylase. J Mol Biol 392:334–351

    Article  CAS  PubMed  Google Scholar 

  18. Akama K, Takaiwa F (2007) C-terminal extension of rice glutamate decarboxylase (OsGAD2) functions as an autoinhibitory domain and overexpression of a truncated mutant results in the accumulation of extremely high levels of GABA in plant cells. J Exp Bot 58:2699–2707

    Article  CAS  PubMed  Google Scholar 

  19. Zik M, Arazi T, Snedden WA, Fromm H (1998) Two isoforms of glutamate decarboxylase in Arabidopsis are regulated by calcium/calmodulin and differ in organ distribution. Plant Mol Biol 37:967–975

    Article  CAS  PubMed  Google Scholar 

  20. Baum G, Chen Y, Arazi T, Takatsuji H, Fromm H (1993) A plant glutamate decarboxylase containing a calmodulin binding domain. Cloning, sequence, and functional analysis. J Biol Chem 268(26):19610–19617

    CAS  PubMed  Google Scholar 

  21. Gallego P, Whotton L, Picton S, Grierson D, Gray J (1995) A role for glutamate decarboxylase during tomato ripening: the characterisation of a cDNA encoding a putative glutamate decarboxylase with a calmodulin-binding site. Plant Mol Biol 27(6):1143–1151

    Article  CAS  PubMed  Google Scholar 

  22. Johnson BS, Singh NK, Cherry JH, Locy RD (1997) Purification and characterization of glutamate decarboxylase from cowpea. Phytochemistry 46(1):39–44

    Article  CAS  Google Scholar 

  23. Bouché N, Fait A, Zik M, Fromm H (2004) The root-specific glutamate decarboxylase (GAD1) is essential for sustaining GABA levels in Arabidopsis. Plant Mol Biol 55(3):315–325

    Article  PubMed  Google Scholar 

  24. Turano FJ, Fang TK (1998) Characterization of two glutamate decarboxylase cDNA clones from Arabidopsis. Plant Physiol 117(4):1411–1421

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Yevtushenko DP, McLean MD, Peiris S, Van Cauwenberghe OR, Shelp BJ (2003) Calcium/calmodulin activation of two divergent glutamate decarboxylases from tobacco. J Exp Bot 54:2001–2002

    Article  CAS  PubMed  Google Scholar 

  26. Oh S-H, Choi W-G, Lee I-T, Yun SJ (2005) Cloning and characterization of a rice cDNA encoding glutamate decarboxylase. J Biochem Mol Biol 38(5):595–601

    Article  CAS  PubMed  Google Scholar 

  27. Zhuang Y, Ren G, He C, Li X, Meng Q, Zhu C, Wang R, Zhang J (2010) Cloning and characterization of a maize cDNA encoding gutamate decarboxylase. Plant Mol Biol Rep 28(4):620–626

    Article  CAS  Google Scholar 

  28. Molina-Rueda JJ, Pascual MB, Cánovas, Francisco M, Gallardo F (2010) Characterization and developmental expression of a glutamate decarboxylase from maritime pine. Planta 232(6):1471–1483

    Article  CAS  PubMed  Google Scholar 

  29. Trobacher C, Zarei A, Liu J, Clark S, Bozzo G, Shelp B (2013) Calmodulin-dependent and calmodulin-independent glutamate decarboxylases in apple fruit. BMC Plant Biol 13(1):144

    Article  PubMed Central  PubMed  Google Scholar 

  30. Arazi T, Baum G, Snedden WA, Shelp BJ, Fromm H (1995) Molecular and biochemical analysis of calmodulin interactions with the calmodulin-binding domain of plant glutamate decarboxylase. Plant Physiol 108:551–561

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. McLean M, Yevtushenko D, Deschene A, Van Cauwenberghe O, Makhmoudova A, Potter J, Bown A, Shelp B (2003) Overexpression of glutamate decarboxylase in transgenic tobacco plants confers resistance to the northern root-knot nematode. Mol Breed 11(4):277–285

    Article  CAS  Google Scholar 

  32. Lee J-H, Kim Y-J, Jeong D-Y, Sathiyaraj G, Pulla R, Shim J-S, In J-G, Yang D-C (2010) Isolation and characterization of a Glutamate decarboxylase (GAD) gene and their differential expression in response to abiotic stresses from Panax ginseng C. A. Meyer. Mol Biol Rep 37(7):3455–3463

    Article  CAS  PubMed  Google Scholar 

  33. Baum G, Lev-Yadun S, Fridmann Y, Arazi T, Katsnelson H, Zik M, Fromm H (1996) Calmodulin binding to glutamate decarboxylase is required for regulation of glutamate and GABA metabolism and normal development in plants. EMBO J 15:2988–2996

    PubMed Central  CAS  PubMed  Google Scholar 

  34. Chen Y, Baum G, Fromm H (1994) The 58-kilodalton calmodulin-binding glutamate decarboxylase is a ubiquitous protein in petunia organs and its expression is developmentally regulated. Plant Physiol 106(4):1381–1387

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Baldwin EA (1993) Citrus fruit. In: Seymour GB, Taylor JE, Tucker GA (eds) Biochemistry of fruit ripening. Chapman & Hall, London, pp 107–149

    Chapter  Google Scholar 

  36. Chen M, Jiang Q, Yin X-R, Lin Q, Chen J-Y, Allan AC, Xu C-J, Chen K-S (2012) Effect of hot air treatment on organic acid- and sugar-metabolism in Ponkan (Citrus reticulata) fruit. Sci Horti 147:118–125

    Article  CAS  Google Scholar 

  37. Zhou GF, Peng SA, Liu YZ, Wei QJ, Han J, Islam MZ (2014) The physiological and nutritional responses of seven different citrus rootstock seedlings to boron deficiency. Trees 28(1):295–307

    Article  CAS  Google Scholar 

  38. Kojima K, Yamada Y, Yamamoto M (1995) Effects of abscisic acid injection on sugar and organic acid contents of citrus fruit. J Jpn Soc Hortic Sci 64:17–21

    Article  CAS  Google Scholar 

  39. Yang S-Y, Lu Z-X, Lu F-X, Bie X-M, Sun L-J (2006) Colorimetric determination of GABA in GAD activity assay. Food Sci 7:205–209

    Google Scholar 

  40. Xu Q, Chen LL, Ruan X, Chen D, Zhu A, Chen C, Bertrand D, Jiao WB, Hao BH, Lyon MP, Chen J, Gao S, Xing F, Lan H, Chang JW, Ge X, Lei Y, Hu Q, Miao Y, Wang L, Xiao S, Biswas MK, Zeng W, Guo F, Cao H, Yang X, Xu XW, Cheng YJ, Xu J, Liu JH, Luo OJ, Tang Z, Guo WW, Kuang H, Zhang HY, Roose ML, Nagarajan N, Deng XX, Ruan Y (2012) The draft genome of sweet orange (Citrus sinensis). Nat Genet 45(1):59–66

    Article  PubMed  Google Scholar 

  41. Liu YZ, Liu Q, Tao NG, Deng XX (2006) Efficient isolation of RNA from fruit peel and pulp of ripening navel orange (Citrus sinensis Osbeck). J Huazhong Agric Univ 25:300–304

    CAS  Google Scholar 

  42. Koressaar T, Remm M (2007) Enhancements and modifications of primer design program Primer3. Bioinformatics 23(10):1289–1291

    Article  CAS  PubMed  Google Scholar 

  43. Guo A-Y, Zhu Q-H, Chen X, Luo J-C (2007) GSDS: a gene structure display server. Yi Chuan 29(8):1023

    Article  CAS  PubMed  Google Scholar 

  44. Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res 27(1):297–300

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Livak KJ, Schmittigen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  47. Kempa S, Krasensky J, Dal Santo S, Kopka J, Jonak C (2008) A central role of abscisic acid in stress-regulated carbohydrate metabolism. PLoS One 3(12):e3935

    Article  PubMed Central  PubMed  Google Scholar 

  48. Navarro JM, Pérez-Pérez JG, Romero P, Botía P (2010) Analysis of the changes in quality in mandarin fruit, produced by deficit irrigation treatments. Food Chem 119(4):1591–1596

    Article  CAS  Google Scholar 

  49. Hockema BR, Etxeberria E (2001) Metabolic contributors to drought-enhanced accumulation of sugars and acids in oranges. J Am Soc Hortic Sci 126(5):599–605

    CAS  Google Scholar 

  50. Jiang N, Jin L-F, Teixeira da Silva JA, Islam MDZ, Gao H-W, Liu Y-Z, Peng S-A (2014) Activities of enzymes directly related with sucrose and citric acid metabolism in citrus fruit in response to soil plastic film mulch. Sci Hortic 168:73–80

    Article  CAS  Google Scholar 

  51. Bastías A, López-Climent M, Valcárcel M, Rosello S, Gómez-Cadenas A, Casaretto JA (2011) Modulation of organic acids and sugar content in tomato fruits by an abscisic acid-regulated transcription factor. Physiol Plant 141(3):215–226

    Article  PubMed  Google Scholar 

  52. Leonhardt N, Kwak JM, Robert N, Waner D, Leonhardt G, Schroeder JI (2004) Microarray expression analyses of Arabidopsis guard cells and isolation of a recessive abscisic acid hypersensitive protein phosphatase 2C mutant. Plant Cell Online 16(3):596–615

    Article  CAS  Google Scholar 

  53. Li Y, Lee KK, Walsh S, Smith C, Hadingham S, Sorefan K, Cawley G, Bevan MW (2006) Establishing glucose-and ABA-regulated transcription networks in Arabidopsis by microarray analysis and promoter classification using a Relevance Vector Machine. Genome Res 16(3):414–427

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Alva AK, Paramasivam S, Dou H, Sajwan KS (2006) Potassium management for optimizing citrus production and quality. Int J Fruit Sci 6:3–43

    Article  Google Scholar 

  55. Tsay Y-F, Ho C-H, Chen H-Y, Lin S-H (2011) Integration of nitrogen and potassium signaling. Annu Rev Plant Biol 62:207–226

    Article  CAS  PubMed  Google Scholar 

  56. Liu H, Shi C, Zhang H, Wang Z, Chai S (2013) Effects of potassium on yield, photosynthate distribution, enzymes’ activity and aba content in storage roots of sweet potato (‘Ipomoea batatas’ Lam.). Aust J Crop Sci 7(6):735–743

    Google Scholar 

  57. Haeder HE, Beringer H (1981) Influence of potassium nutrition and water stress on the content of abscisic acid in grains and flag leaves of wheat during grain development. J Sci Food Agric 32(6):552–556

    Article  CAS  Google Scholar 

  58. Marrush M, Yamaguchi M, Saltveit ME (1998) Effect of potassium nutrition during bell pepper seed development on vivipary and endogenous levels of abscisic acid (ABA). J Am Soc Hortic Sci 123(5):925–930

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Hubei Province Natural Science Foundation (No. ZRY0116) and the National Natural Science Foundation of China (No. 31372012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Zhong Liu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 422 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Hu, XM., Jin, LF. et al. Identification and transcript analysis of two glutamate decarboxylase genes, CsGAD1 and CsGAD2, reveal the strong relationship between CsGAD1 and citrate utilization in citrus fruit. Mol Biol Rep 41, 6253–6262 (2014). https://doi.org/10.1007/s11033-014-3506-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3506-x

Keywords

Navigation