Skip to main content

Advertisement

Log in

Global Analysis of Gene Expression During Development and Ripening of Citrus Fruit Flesh. A Proposed Mechanism for Citric Acid Utilization

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Microarrays of cDNA have been used to examine expression changes of 7000 genes during development and ripening of the fruit flesh of self-incompatible Citrus clementina, a non-climateric species. The data indicated that 2243 putative unigenes showed significant expression changes. Functional classification revealed that genes encoding for regulatory proteins were significantly overrepresented in the up-regulated gene clusters. The transcriptomic study together with the analyses of selected metabolites highlighted key physiological processes occurring during citrus fruit development and ripening such as water accumulation, carbohydrate build-up, acid reduction, pigment substitutions (carotenoid accumulation and chlorophyll decreases) and ascorbic acid diminution. Often, the combined analyses strongly suggested prevalence of specific metabolic alternatives. This observation has been exemplified with the proposal for a mechanism for citrate utilization, a process of much importance in citrus industry. Microarray data validated by real-time RT-PCR suggested that citrate was sequentially metabolyzed to isocitrate, 2-oxoglutarate and glutamate. Thereafter, glutamate was both utilized for glutamine production and catabolyzed through the gamma-aminobutirate (GABA) shunt (GABA → succinate semialdehyde → succinate). This last observation appears to be of special relevance since it links the proton consuming reaction glutamate + H+→ GABA  + CO2 with high acid levels. GG-MS determinations showed that glutamate was constant while GABA levels decreased at ripening in agreement with a feasible activation of the GABA shunt during acid catabolism. This suggestion provides a convincing explanation for the strong reduction of both citrate and cytoplasmatic acidity that takes place in citrus fruit flesh during development and ripening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AGRIS:

Arabidopsis Gene Regulatory Information Server

DPA:

Days post anthesis

EST:

Expressed sequence tag

GABA:

Gamma-aminobutirate

LIMMA:

Linear models in microarrays

MIPS:

Munich Information Center for Protein Sequences

SOTA:

Self Organizing Tree Algorithm

TAIR:

The Arabidopsis Information Resource

TIP:

Tonoplast-Intrinsic Protein

References

  • Agustí M, Zaragoza S, Iglesias DJ, Almela V, Primo-Millo E, Talón M (2002) The synthetic auxin 3,5,6-TPA stimulates carbohydrate accumulation and growth in citrus fruit. Plant Growth Regul 36:141–147

    Article  Google Scholar 

  • Aristoy MC, Orlando L, Navarro JL, Sendra JM, Izquierdo L (1989) Characterization of spanish orange juice for variables used in purity control. J Agric Food Chem 37:596–600

    Article  CAS  Google Scholar 

  • Bain JM (1958) Morphological, anatomical and physiological changes in the developing fruit of the Valencia orange, Citrus sinensis (L) Osbeck. Aust J Bot 6:1–24

    Article  CAS  Google Scholar 

  • Baldwin EA (1993) Citrus fruit. In: Seymour GB, Taylor JE, Tucker GA (eds) Biochemistry of fruit ripening. Chapman & Hall, London, pp 107–149

    Google Scholar 

  • Bittner M, Butow R, DeRisi J, Diehn M, Eberwine J, Epstein CB, Glynne R, Grimmond S, Ideker T, Kacharmina JE, Katsabanis S, Khan J, Lee J, Liu CL, Marciano P, Marincola FM, McIntosh T, Monte D, Pollack JR, Rhodius V, Somerville S, Tom E, Wang E, Wei JS, Willhite D, Ybarra S (2003) Expression analysis of RNA. In: Bowtell D, Sambrook J (eds), DNA microarrays: a molecular cloning manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY pp 101–288

    Google Scholar 

  • Boggio SB, Palatnik JF, Heldt HW, Valle EM (2000) Changes in amino acid composition and nitrogen metabolizing enzymes in ripening fruits of Lycopersicon esculentum Mill. Plant Sci 159:125–133

    Article  PubMed  CAS  Google Scholar 

  • Bortolotti S, Boggio SB, Delgado L, Orellano EG, Valle EM (2003) Different induction patterns of glutamate metabolizing enzymes in ripening fruits of the tomato mutant green flesh. Physiol Plant 119:384–391

    Article  CAS  Google Scholar 

  • Bown AW, Shelp BJ (1997) The metabolism and functions of γ-aminobutyric acid. Plant Physiol 115:1–5

    PubMed  CAS  Google Scholar 

  • Bustin SA (2002) Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. J Mol Endocrinol 29:23–39

    Article  PubMed  CAS  Google Scholar 

  • Carroll AD, Fox GG, Laurie S, Phillips R, Ratcliffe RG, Stewart GR (1994) Ammonium assimilation and the role of γ-aminobutyric acid in pH homeostasis in carrot cell suspensions. Plant Physiol 106:513–520

    PubMed  CAS  Google Scholar 

  • Chandler BV (1958) Anthocyanins of blood oranges. Nature 182:933

    Article  PubMed  CAS  Google Scholar 

  • Chen R (1998) Plant NADP-dependent isocitrate dehydrogenases are predominantly localized in the cytosol. Planta 207:280–285

    Article  PubMed  CAS  Google Scholar 

  • Davies BH (1976) Carotenoids. In: Goodwin TW (ed) Chemistry and biochemistry of plant pigments. Academis Press, New York, pp 38–165

  • Daniels MJ, Chaumont F, Mirkov TE, Chrispeels MJ (1996) Characterization of a new vacuolar membrane aquaporin sensitive to mercury at a unique site. Plant Cell 8:587–599

    Article  PubMed  CAS  Google Scholar 

  • Davies FS, Albrigo LG (1994) Citrus. CAB International, Oxon

    Google Scholar 

  • Davuluri RV, Sun H, Palaniswamy SK, Matthews N, Molina C, Kurtz M, Grotewold E (2003) AGRIS: Arabidopsis Gene Regulatory Information Server, an information resource of Arabidopsis cis-regulatory elements and transcription factors. BMC Bioinformatics 4:25

    Article  PubMed  Google Scholar 

  • Forment J, Gadea J, Huerta L, Abizanda L, Agustí J, Alamar S, Alós E, Andrés F, Arribas R, Beltrán JP, Berbell A, Blázquez MA, Brumós J, Cañas LA, Cercós M, Colmenero-Flores JM, Conesa A, Estables B, Gandía M, García-Martínez JL, Gimeno J, Gisbert A, Gómez G, González-Candelas L, Granell A, Guerri J, Lafuente MT, Madueño F, Marcos JF, Marqués MC, Martínez F, Martínez-Godoy MA, Miralles S, Moreno P, Navarro L, Pallás V, Pérez-Amador MA, Pérez-Valle J, Pons C, Rodrigo I, Rodríguez PL, Royo C, Serrano R, Soler G, Tadeo F, Talón M, Terol J, Trenor M, Vaello L, Vicente O, Vidal C, Zacarías L, Conejero V (2005) Development of a citrus genome-wide EST collection and cDNA microarray as resources for genomic studies. Plant Mol Biol 57:375–391

    Article  PubMed  CAS  Google Scholar 

  • Gallardo F, Gálvez S, Gadal P, Cánovas FM (1995) Changes in NADP(+)-linked isocitrate dehydrogenase during tomato fruit ripening—characterization of the predominant cytosolic enzyme from green and ripe pericarp. Planta 196:148–154

    Article  CAS  Google Scholar 

  • Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J, Hornik K, Hothorn T, Huber W, Iacus S, Irizarry R, Leisch F, Li C, Maechler M, Rossini AJ, Sawitzki G, Smith C, Smyth G, Tierney L, Yang JYH, Zhang J (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5:R80

    Article  PubMed  Google Scholar 

  • Gepstein S, Sabehi G, Carp MJ, Hajouj T, Nesher MFO, Yariv I, Dor C, Bassani M (2003) Large-scale identification of leaf senescence-associated genes. Plant J 36:629–642

    Article  PubMed  CAS  Google Scholar 

  • Giovannoni J (2004) Genetic regulation of fruit development and ripening. Plant Cell 16:S170–S180

    Article  PubMed  CAS  Google Scholar 

  • Gómez-Cadenas A, Mehouachi J, Tadeo FR, Primo-Millo E, Talón M (2000) Hormonal regulation of fruitlet abscission induced by carbohydrate shortage in citrus. Planta 210:636–643

    Article  PubMed  Google Scholar 

  • Hashimoto JG, Beadles-Bohling AS, Wiren KM (2004) Comparison of RiboGreen and 18S rRNA quantitation for normalizing real-time RT-PCR expression analysis. BioTechniques 36:54–60

    PubMed  CAS  Google Scholar 

  • Hennig L, Gruissem W, Grossniklaus U, Köhler C (2004) Transcriptional programs of early reproductive stages in Arabidopsis. Plant Physiol 135:1765–1775

    Article  PubMed  CAS  Google Scholar 

  • Herrero J, Valencia A, Dopazo J (2001) A hierarchical unsupervised growing neural network for clustering gene expression patterns. Bioinformatics 17:126–136

    Article  PubMed  CAS  Google Scholar 

  • Hodges M (2002) Enzyme redundancy and the importance of 2-oxoglutarate in plant ammonium assimilation. J Exp Bot 53:905–916

    Article  PubMed  CAS  Google Scholar 

  • Huber W, Heydebreck AV, Sültmann H, Poustka A, Vingron M (2002) Variance stabilization applied to microarray data calibration and to the quantification of differential expression. Bioinformatics 18:S96–S104

    PubMed  Google Scholar 

  • Ideker T, Ybarra S, Grimmond S (2003) Hybridization and posthybridization washing. In: Bowtell D, Sambrook J (eds) DNA microarrays: a molecular cloning manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY pp 228–239

    Google Scholar 

  • Iglesias DJ, Tadeo FR, Legaz F, Primo-Millo E, Talón M (2001) In vivo sucrose stimulation of colour change in citrus fruit epicarps: interactions between nutritional and hormonal signals. Physiol Plant 112:244–250

    Article  PubMed  CAS  Google Scholar 

  • Iglesias DJ, Tadeo FR, Primo-Millo E, Talón M (2003) Fruit set dependence on carbohydrate availability in citrus trees. Tree Physiol 23:199–204

    PubMed  CAS  Google Scholar 

  • Jacob-Wilk D, Goldschmidt EE, Riov J, Sadka A, Holland D (1997) Induction of a citrus gene highly homologous to plant and yeast thi genes involved in thiamine biosynthesis during natural and ethylene-induced fruit maturation. Plant Mol Biol 35:661–666

    Article  PubMed  CAS  Google Scholar 

  • Jauh GY, Phillips TE, Rogers JC (1999) Tonoplast intrinsic protein isoforms as markers for vacuolar functions. Plant Cell 11:1867–1882

    Article  PubMed  CAS  Google Scholar 

  • Johanson U, Karlsson M, Johansson I, Gustavsson S, Sjövall S, Fraysse L, Weig AR, Kjellbom P (2001) The complete set of genes encoding major intrinsic proteins in Arabidopsis provides a framework for a new nomenclature for major intrinsic proteins in plants. Plant Physiol 126:1358–1369

    Article  PubMed  CAS  Google Scholar 

  • Kothapalli R, Yoder SJ, Mane S, Loughran TP (2002) Microarray results: how accurate are they? BMC Bioinformatics 3:22–32

    Article  PubMed  Google Scholar 

  • Mehouachi J, Serna D, Zaragoza S, Agusti M, Talón M, Primo-Millo E (1995) Defoliation increases fruit abscission and reduces carbohydrate levels in developing fruits and woody tissues of Citrus unshiu. Plant Sci 107:189–197

    Article  CAS  Google Scholar 

  • Moriguchi T, Kita M, Hisada S, Endo-Inagaki T, Omura M (1998) Characterization of gene repertoires at mature stage of citrus fruits through random sequencing and analysis of redundant metallothionein-like genes expressed during fruit development. Gene 211:221–227

    Article  PubMed  CAS  Google Scholar 

  • Mueller LA, Zhang P, Rhee SY (2003) AraCyc: a biochemical pathway database for Arabidopsis. Plant Physiol 132:453–460

    Article  PubMed  CAS  Google Scholar 

  • Nagy S, Nordby HE (1971) Distribution of free and conjugated sterols in orange and tangor juice sacs. Lipids 6:826–830

    CAS  Google Scholar 

  • Rodrigo MJ, Marcos J, Alférez F, Mallent MD, Zacarías L 2003 Characterization of Pinalate, a novel Citrus sinensis mutant with a fruit-specific alteration that results in yellow pigmentation and decreased ABA content. J Exp Bot 54:727–738

    Article  PubMed  CAS  Google Scholar 

  • Rothan C, Duret S, Chevalier C, Raymond P (1997) Suppression of ripening-associated gene expression in tomato fruits subjected to a high CO2 concentration. Plant Physiol 114:255–263

    PubMed  CAS  Google Scholar 

  • Ruuska SA, Girke T, Benning C, Ohlrogge JB (2002) Contrapuntal networks of gene expression during Arabidopsis seed filling. Plant Cell 14:1191–1206

    Article  PubMed  CAS  Google Scholar 

  • Sadka A, Dahan E, Cohen L, Marsh KB (2000a) Aconitase activity and expression during the development of lemon fruit. Physiol Plant 108:255–262

    Article  CAS  Google Scholar 

  • Sadka A, Dahan E, Or E, Cohen L (2000b) NADP+-isocitrate dehydrogenase gene expression and isozyme activity during citrus fruit development. Plant Sci 158:173–181

    Article  CAS  Google Scholar 

  • Saito C, Ueda T, Abe H, Wada Y, Kuroiwa T, Hisada A, Furuya M, Nakano A (2002) A complex and mobile structure forms a distinct subregion within the continuous vacuolar membrane in young cotyledons of Arabidopsis. Plant J 29:245–255

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Saunt J (1990) Citrus varieties of the world. Sinclair Int. Ltd., Norwich, UK

    Google Scholar 

  • Shimada T, Fuiii H, Endo T, Yazaki J, Kishimoto N, Shimbo K, Kikuchi S, Omura M (2005) Toward comprehensive expression profiling by microarray analysis in citrus: monitoring the expression profiles of 2213 genes during fruit development. Plant Sci 168:1383–1385

    Article  CAS  Google Scholar 

  • Smith GK (2004) Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Statistical Applications in Genetics and Molecular Biology 3, No. 1, Article 3

  • Smith JHC, Benítez A (1955) Chlorophylls. In: Paech K, Tracey MM (eds) Modern methods of plant analysis. Springer, Berlin, pp 142–196

    Google Scholar 

  • Takahashi N, Yamaguchi I, Kono T, Igoshi M, Hirose K (1965) Characterization of plant growth substance in Citrus unshiu and their change in fruti development. Plant Cell Physiol 16:101–111

    Google Scholar 

  • Thomas H, Ougham HJ, Wagstaff C, Stead AD (2003) Defining senescence and death. J Exp Bot 54:1127–1132

    Article  PubMed  CAS  Google Scholar 

  • Xu W, Bak S, Decker A, Paquette SM, Feyereisen R, Galbraith DW (2001) Microarray-based analysis of gene expression in very large gene families: the cytochrome P450 gene superfamily of Arabidopsis thaliana. Gene 272:61–74

    Article  PubMed  CAS  Google Scholar 

Download references

Aknowledgements

This work was supported by INIA-FEDER (grants RTA03-106 and RTA04-013) and by the Ministerio de Ciencia y Tecnologia (grant GEN-2001-4885-C05-03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Talón.

Additional information

Manuel Cercós and Guillermo Soler contributed equally to this work

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cercós, M., Soler, G., Iglesias, D.J. et al. Global Analysis of Gene Expression During Development and Ripening of Citrus Fruit Flesh. A Proposed Mechanism for Citric Acid Utilization. Plant Mol Biol 62, 513–527 (2006). https://doi.org/10.1007/s11103-006-9037-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-006-9037-7

Keywords

Navigation