Skip to main content
Log in

Molecular mapping and physical location of major gene conferring seedling resistance to Septoria tritici blotch in wheat

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Septoria tritici blotch (STB) caused by Mycosphaerella graminicola (anamorph: Septoria tritici), is one of the most important foliar diseases of wheat. We assessed three doubled-haploid (DH) populations derived from Chara (STB-susceptible)/WW2449 (STB-resistant), Whistler (STB-susceptible)/WW1842 (STB-resistant) and Krichauff (STB susceptible)/WW2451 (STB-resistant) for resistance to a single-pycnidium isolate 79.2.1A of M. graminicola at the seedling stage. STB resistance in each of the three DH populations was conditioned by a single major gene designated as StbWW2449, StbWW1842 and StbWW2451. Linkage analyses and physical mapping indicated that the StbWW loci were located on the short arm of chromosome 1B (IBS). Four simple sequence repeat (SSR) markers linked with STB resistance: Xwmc230, Xbarc119b, Xksum045 and Xbarc008 were located to the distal bin of 1BS.sat1BS-4 (FL: 0.52–1.00) in the 1BS physical map. Xwmc230, Xbarc119b and Xksum045 markers, mapped within 7 cM from StbWW were validated for their linkage and predicted the STB resistance with over 94% accuracy in the 79 advanced breeding lines having WW2449 as one of the parents. The marker interval Xwmc230/Xksum045-Xbarc119b also explained up to 38% of the phenotypic variance at the adult plant stage in all three DH mapping populations. These results have proven that SSR markers are useful in monitoring STB resistance both at seedling and adult plant stages and hence are suitable for routine marker-assisted selection in the wheat breeding programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adhikari TB, Anderson JM, Goodwin SB (2003) Identification and molecular mapping of a gene in wheat conferring resistance to Mycosphaerella graminicola. Phytopathology 93:1158–1164. doi:10.1094/PHYTO.2003.93.9.1158

    Article  PubMed  CAS  Google Scholar 

  • Adhikari TB, Cavaletto JR, Dubcovsky J, Gieco J, Schlatter AR, Goodwin SB (2004a) Molecular mapping of the Stb4 gene for resistance to Septoria tritici blotch in wheat. Phytopathology 94:1198–1206. doi:10.1094/PHYTO.2004.94.11.1198

    Article  PubMed  CAS  Google Scholar 

  • Adhikari TB, Wallwork H, Goodwin SB (2004b) Microsatellite markers linked to the Stb2 and Stb3 genes for resistance to Septoria tritici blotch in wheat. Crop Sci 44:1403–1411

    CAS  Google Scholar 

  • Adhikari TB, Yang X, Cavaletto JR, Hu X, Buechley G, Ohm HW, Shaner G, Goodwin SB (2004c) Molecular mapping of Stb1, a potentially durable gene for resistance to Septoria tritici blotch in wheat. Theor Appl Genet 109:944–953. doi:10.1007/s00122-004-1709-6

    Article  PubMed  CAS  Google Scholar 

  • Arraiano LS, Worland AJ, Ellerbrook C, Brown JKM (2001) Chromosomal location of a gene for resistance to Septoria tritici blotch (Mycosphaerella graminicola) in the hexaploid wheat ‘Synthetic 6x’. Theor Appl Genet 103:758–764. doi:10.1007/s001220100668

    Article  CAS  Google Scholar 

  • Arraiano LS, Chartrain L, Bossolini E, Slatter HN, Keller B, Brown JKM (2007) A gene in European wheat cultivars for resistance to an African isolate of Mycosphaerella graminicola. Plant Pathol 56:73–78. doi:10.1111/j.1365-3059.2006.01499.x

    Article  CAS  Google Scholar 

  • Ballantyne BJ (1983) Resistance to speckled leaf blotch of wheat in southern New South Wales. Pages 31–32 In: septoria of Cereals: proceedings Workshop. A.L. Scharen, ed. Montana State University, Bozeman

  • Ballantyne BJ, Thomson F (1995) Pathogenic variation in Australian isolates of Mycosphaerella graminicola. Aust J Agric Res 46:921–934. doi:10.1071/AR9950921

    Article  Google Scholar 

  • Brading PA, Verstappen ECP, Kema GHJ, Brown JKM (2002) A gene-for-gene relationship between wheat and Mycosphaerella graminicola, the Septoria tritici blotch pathogen. Phytopathology 92:439–445. doi:10.1094/PHYTO.2002.92.4.439

    Article  PubMed  Google Scholar 

  • Chartrain L, Brading PA, Makepeace JC, Brown JKM (2004) Sources of resistance to Septoria tritici blotch and implications for wheat breeding. Plant Pathol 53:454–460. doi:10.1111/j.1365-3059.2004.01052.x

    Article  Google Scholar 

  • Chartrain L, Berry ST, Brown JKM (2005a) Resistance of the wheat line Kavkaz-K4500 L.6.A.4 to Septoria tritici blotch controlled by isolate-specific resistance genes. Phytopathology 95:664–671. doi:10.1094/PHYTO-95-0664

    Article  PubMed  CAS  Google Scholar 

  • Chartrain L, Joaquim P, Berry ST, Arraiano LS, Azanza F, Brown JKM (2005b) Genetics of resistance to Septoria tritici blotch in the Portuguese wheat breeding line TE9111. Theor Appl Genet 110:1138–1144. doi:10.1007/s00122-005-1945-4

    Article  PubMed  CAS  Google Scholar 

  • Coombes NE (2002) The reactive tabu search for efficient correlated experimental designs. PhD Thesis. Liverpool John Moores University, Liverpool UK

  • Cowger C, Hoffer ME, Mundt CC (2000) Specific adaptation by Mycospaerella graminicola to a vertically resistant wheat cultivar. Plant Pathol 49:445–451. doi:10.1046/j.1365-3059.2000.00472.x

    Article  Google Scholar 

  • Dilbirligi M, Erayman M, Sandhu D, Sidhu D, Gill KS (2004) Identification of wheat chromosomal regions containing expressed resistance genes. Genetics 166:461–481

    Article  PubMed  CAS  Google Scholar 

  • Dublin HJ, Rajaram S (1996) Breeding disease resistant wheats for tropical highlands and lowlands. Annual Review of Phytopathology 49:445–451

    Google Scholar 

  • Endo TR, Gill BS (1996) The deletion stocks of common wheat. J Hered 87:295–307

    CAS  Google Scholar 

  • Eriksen L, Borum F, Jahoor A (2003) Inheritance and location of resistance to Mycosphaerella graminicola causing Septoria tritici blotch and plant height in the wheat (Triticum aestivum L.) genome with DNA markers. Theor Appl Genet 107:515–527

    Article  PubMed  CAS  Google Scholar 

  • Eyal Z (1999) Septoria on cereals: a study of pathosystems. In: Lucas JA, Bowyer P, Anderson HM (eds) Breeding for resistance to Septoria and Stagnospora diseases of wheat. CABI 531 Publishing, Cambridge, pp 332–344

    Google Scholar 

  • Eyal Z, Scharen AL, Prescott JM, Van Ginkel M (1987) The septoria diseases of wheat: concepts and methods of disease management. CIMMYT, Mexico

    Google Scholar 

  • Fraaije BA, Cools HJ, Fountaine J, Lovell DJ, Motteram J, West JS, Lucas JA (2005) Role of ascospores in further spread of QoI-resistant cytochrome b alleles (G143A) in field populations of Mycosphaerella graminicola. Phytopathology 95:933–941

    Article  PubMed  CAS  Google Scholar 

  • Goyal A, Bandopadhyay R, Sourdille P, Endo TR, Balyan H, Gupta P (2005) Physical molecular maps of wheat chromosomes. Funct Integr Genomics 5:260–263

    Article  PubMed  CAS  Google Scholar 

  • Haley SD, Knott SA (1992) A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity 69:315–324

    PubMed  CAS  Google Scholar 

  • Hayden MJ, Sharp PJ (2001) Sequence-tagged microsatellite profiling (STMP): a rapid technique for developing SSR markers. Nucleic Acids Research 29(8):e43

    Article  PubMed  CAS  Google Scholar 

  • Hunter T, Coker RR, Royal DJ (1999) The telomorph stage, Mycosphaerella graminicola, in epidemics of septoria tritici blotch on winter wheat in the UK. Plant Pathology 48:51–57

    Article  Google Scholar 

  • Jackson LF, Dubcovsky J, Gallagher LW, Wennig RL, Heaton J, Vogt H, Gibbs LK, Kirby D, Canevari M, Carlson H, Kearney T, Marsh B, Munier D, Mutters C, Orloff S, Schmierer J, Vargas R, Williams J, Wright S (2000) Regional barley and common and durum wheat performance tests in California. Agron Prog Rep 272:1–56

    Google Scholar 

  • Ju-Kyung Y, Dake TM, Singh S, Benscher D, Wanlong L, Gill B, Sorrells E (2004) Development and mapping of EST–derived simple sequence repeat markers for hexaploid wheat. Genome 47:805–818

    Article  Google Scholar 

  • Laurie DA, Bennett MD (1998) The production of haploid wheat plants from wheat × maize crosses. Theor Appl Genet 76:393–397

    Google Scholar 

  • Manly KF, Cudmore RH, Meer JM (2001) Map manager QTX, cross-platform software for genetic mapping. Mammalian Genome 12:930–932

    Article  PubMed  CAS  Google Scholar 

  • McCartney CA, Brule-Babel AL, Lamari L, Somers DJ (2003) Chromosomal location of a race- specific resistance gene to Mycosphaerella graminicola in the spring wheat ST6. Theor Appl Genet 107:1181–1186

    Article  PubMed  CAS  Google Scholar 

  • Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genome regions by using segregating populations. Proc Natl Acad Sci USA 88:9828–9832

    Article  PubMed  CAS  Google Scholar 

  • Os H, Stam P, Visser R, Eck H (2006) RECORD: a novel method for ordering loci on a genetic linkage map. Theor Appl Genet 112:389

    Article  CAS  Google Scholar 

  • Palmer CL, Skinner W (2002) Mycosphaerella graminicola: latent infection, crop devastation and genomics. Mol Plant Pathol 3:63–70

    Article  CAS  PubMed  Google Scholar 

  • Peng JH, Fahima T, Roder MS, Li YC, Huang QY, Dahan A, Grama A, Nevo E (2000) High- density molecular map of chromosome region harboring stripe rust resistance genes YrH52 and Yr15 derived from wild emmer wheat Triticum dicoccoides. Genetica 109:199–210

    Article  PubMed  CAS  Google Scholar 

  • Qi L, Friebe B, Gill BS (2005) Origin, structure and behaviour of a highly rearranged deletion chromosome 1BS-4 in wheat. Genome 48:591–597

    Article  PubMed  CAS  Google Scholar 

  • Raman R, Milgate AW, Imtiaz M, Tan M-K, Raman H, Martin P, Coombes N, Lisle C (2004) Molecular mapping of a new major gene Stb9 conferring resistance to Septoria tritici blotch in wheat. Cereal chemistry and 11th Wheat Assembly Combined Conference, Canberra, Australia, pp 40–44

  • Raman R, Raman H, Johnstone K, Lisle C, Smith A, Martin P, Allen H (2005) Genetic and in silico comparative mapping of the polyphenol oxidase gene in bread wheat (Triticum aestivum L.). Funct Integr Genomics 5:185–200

    Article  PubMed  CAS  Google Scholar 

  • Rillo AO, Caldwell RM (1966) Inheritance of resistance to Septoria tritici in Triticum aestivum subsp. vulgare “Bulgaria 88” (abstract). Phytopathology 56:897

    Google Scholar 

  • Röder MS, Korzun V, Gill BS, Ganal MW (1998) The physical mapping of microsatellite markers in wheat. Genome 41:278–283

    Article  Google Scholar 

  • Rosielle AA (1972) Sources of resistance in wheat to speckled leaf blotch caused by Septoria tritici. Euphytica 21:152–161

    Article  Google Scholar 

  • Schluter K (2004) Strobilurin resistance in leaf Septoria. [German]. Getreide Magazin Mann, Gelsenkirchen, Germany:86–91

  • Schnurbusch T, Paillard S, Schori A, Messmer M, Schachermayr G, Winzeler M, Keller B (2004) Dissection of quantitative and durable leaf rust resistance in Swiss winter wheat reveals a major resistance QTL in the Lr34 chromosomal region. Theor Appl Genet 108:477–484

    Article  PubMed  CAS  Google Scholar 

  • Sears ER (1966) Chromosomal manipulations and plant genetics. In: Riley R, Lewis KR (eds) Nullisomics-tetrasomic combinations in hexaploid wheat. Oliver and Boyd, London, pp 29–47

    Google Scholar 

  • Shaner G, Finney RE (1982) Resistance in soft red winter wheat to Mycosphaerella graminicola. Phytopathology 72:154–158

    Article  Google Scholar 

  • Shen X, Ittu M, Ohm HW (2003) Quantitative trait loci conditioning resistance to Fusarium head blight in wheat line F201R. Crop Sci 43:850–857

    Article  CAS  Google Scholar 

  • Somasco OA, Qualset CO, Gilchrist DG (1996) Single-gene resistance to Septoria tritici blotch in the spring wheat cultivar ‘Tadinia”. Plant Breed 115:261–267

    Article  Google Scholar 

  • Sourdille P, Singh S, Cadalen T, Brown-Guedira GL, Gay G, Qi L, Gill BS, Dufour P, Murigneux A, Bernard M (2004) Microsatellite-based deletion bin system for the establishment of genetic-physical map relationships in wheat (Triticum aestivum L.). Funct Integr Genet 4:12–25

    Article  CAS  Google Scholar 

  • Tsujimoto H, Yamada T, Hasegawa K, Usami N, Kojima T, Endo TR, Ogihara Y, Sasakuma T (2001) Large-scale selection of lines with deletions in chromosome 1B in wheat and applications for fine deletion mapping. Genome 44:501–508

    Article  PubMed  CAS  Google Scholar 

  • Tyrka M, Chelkowski J (2004) Enhancing the resistance of triticale by using genes from wheat and rye. J Appl Genet 45:283–295

    PubMed  Google Scholar 

  • Van den Berg JH, Chasalow SD, Waugh R (1997) RFLP mapping of plant nuclear genomes: planning of experiments, linkage map construction, and QTL mapping. In: Clark MS (ed) Plant molecular biology–a laboratory manual. Springer-Verlag, Heidelberg, pp 335–396

    Google Scholar 

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Heredity 93:77–78

    Article  CAS  Google Scholar 

  • Werner JE, Endo TR, Gill BS (1992) Toward a cytogenetically based physical map of the wheat genome. Proc Natl Acad Sci 89:11307–11311

    Article  PubMed  CAS  Google Scholar 

  • Wilson RE (1979) Resistance to Septoria tritici in two wheat cultivars, determined by independent single dominant genes. Australas Plant Pathol 8:16–18

    Article  Google Scholar 

  • Zakari A, McIntosh RA, Hovmoller MS, Wellings CR, Shariflou MR, Hayden MR, Bariana H (2003) Recombination of Yr15 and Yr24 in chromosome 1BS. In: Pogna NE, Romano N, Pogna EA, Galterio G (eds) Proceedings of 10th international wheat genetics symposium, Rome, Italy, vol 1, pp 417–420

Download references

Acknowledgments

We thank Drs Evans Lagudah (CSIRO Plant Industries, Australia and BS. Gill (Kansas State University, USA) for providing seeds of the wheat aneuploid lines. HR also thanks Dr KS. Gill (Washington State University, USA) for suggestions. This research work was supported by the NSW Agricultural Genomics Centre funded under the NSW Government’s BioFirst Initiative, Grains Research and Development Corporation, Value Added Wheat CRC and Enterprise Grains Australia. Technical assistance in STB evaluation tests conducted at the Wagga Wagga Agricultural Institute was provided by the late Mrs. Zdenka Tomes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Raman.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 83 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raman, R., Milgate, A.W., Imtiaz, M. et al. Molecular mapping and physical location of major gene conferring seedling resistance to Septoria tritici blotch in wheat. Mol Breeding 24, 153–164 (2009). https://doi.org/10.1007/s11032-009-9280-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-009-9280-0

Keywords

Navigation